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CHAPTER
ONE

SASVIEW USER DOCUMENTATION

Note: In Windows use [Alt]-[Cursor left] to return to the previous page

1.1 Model Functions

1.1.1 Cylinder Functions

barbell

Cylinder with spherical end caps

Parameter | Description Units Default value
scale Source intensity None 1

background | Source background cm’! 0.001

sld Barbell scattering length density | 10°A2 | 4

sld_solvent | Solvent scattering length density 10°A2 | 1

radius_bell Spherical bell radius A 40

radius Cylindrical bar radius A 20

length Cylinder bar length A 400

theta Barbell axis to beam angle degree | 60

phi Rotation about beam degree | 60

The returned value is scaled to units of cm™! sr'!, absolute scale.

Definition

Calculates the scattering from a barbell-shaped cylinder. Like capped_cylinder, this is a sphereocylinder with
spherical end caps that have a radius larger than that of the cylinder, but with the center of the end cap radius lying
outside of the cylinder. See the diagram for the details of the geometry and restrictions on parameter values.

The scattered intensity I(q) is calculated as

I(g) = =7 (4*(q,@)-sin(a))

where the amplitude A(g, o) with the rod axis at angle « to g is given as

sin (3qL cos @) 2.J; (grsin @)

A(q) = 7r’L

%qL cos o qrsin o

1
+47TR3/ dt cos [qcosa(Rt—i—h—!— %L)] X
~h/R

(1—1t7)

Ji [quina (1- t2)1/2]

gRsina (1 —t?)

1/2
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Fig. 1.1: Barbell geometry, where r is radius, R is radius_bell and L is length. Since the end cap radius R > r
and by definition for this geometry h < 0, h is then defined by r and R as h = —v/ R? — r?

The (...) brackets denote an average of the structure over all orientations. <A2 (g, a)> is then the form factor,
P(q). The scale factor is equivalent to the volume fraction of cylinders, each of volume, V. Contrast Ap is the
difference of scattering length densities of the cylinder and the surrounding solvent.

The volume of the barbell is
V =nr?L+2r (3R® + R*h — 11h?)
and its radius of gyration is
R? = [2R°+ R*(6h+ 2L) + R* (4n® + L* + 4Lh) + R (3Lh*> + 3 L*h)
+2h% — LAY — L1203 4 1130?4310 (4RP6R2h — 21° + 3r2L)

Note: The requirement that R > r is not enforced in the model! It is up to you to restrict this during analysis.

The 2D scattering intensity is calculated similar to the 2D cylinder model.

\~d\~\.
etectomg\

Fig. 1.2: Definition of the angles for oriented 2D barbells.

2 Chapter 1. SasView User Documentation
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Fig. 1.3: 1D and 2D plots corresponding to the default parameters of the model.

References
Authorship and Verification
e Author: NIST IGOR/DANSE Date: pre 2010
¢ Last Modified by: Paul Butler Date: March 20, 2016
¢ Last Reviewed by: Richard Heenan Date: January 4, 2017

capped_cylinder

Right circular cylinder with spherical end caps and uniform SLD

Parameter | Description Units Default value
scale Source intensity None 1

background | Source background cm’ 0.001

sld Cylinder scattering length density | 10°A2 | 4

sld_solvent | Solvent scattering length density | 10°A2 | 1

radius Cylinder radius A 20

radius_cap | Cap radius A 20

length Cylinder length A 400

theta cylinder axis to beam angle degree | 60

phi rotation about beam degree | 60

The returned value is scaled to units of cm™! sr'!, absolute scale.
Definitions

Calculates the scattering from a cylinder with spherical section end-caps. Like barbell, this is a sphereocylinder
with end caps that have a radius larger than that of the cylinder, but with the center of the end cap radius lying
within the cylinder. This model simply becomes a convex lens when the length of the cylinder L = 0. See the
diagram for the details of the geometry and restrictions on parameter values.

The scattered intensity I(q) is calculated as

2
I(q) = A7p <A2(q,a).sin(a)>

1.1. Model Functions 3
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Fig. 1.4: Capped cylinder geometry, where r is radius, R is bell_radius and L is length. Since the end cap radius
R > r and by definition for this geometry h < 0, h is then defined by r and R as h = —VR? — 12

where the amplitude A(g, «) with the rod axis at angle « to g is given as

sin (3¢L cos @) 2.J; (qr sin )

A(q) = nr’L
(@) 1qLcosa grsin o

ol J1 [quina (1- t2)1/2]
+47rR‘3/ dtcos [qeosa (Rt +h+ 3L)] x (1 —t%) 7
—~h/R gRsina (1 —t?) /

The (...) brackets denote an average of the structure over all orientations. { A%(g)) is then the form factor, P(q).
The scale factor is equivalent to the volume fraction of cylinders, each of volume, V. Contrast Ap is the difference
of scattering length densities of the cylinder and the surrounding solvent.

The volume of the capped cylinder is (with h as a positive value here)
V=mrlL+ 2 (R—h)*(2R+h)
and its radius of gyration is
R2= [2R°+ R" (6h+ 2L) + R? (4h* + L? + 4Lh) + R? (3Lh* + $L°h)

g
+2h% — LLh* — 120 + 1132 4+ 3104 (ARP6R?h — 21 + 3r2L)

Note: The requirement that R > r is not enforced in the model! It is up to you to restrict this during analysis.

The 2D scattering intensity is calculated similar to the 2D cylinder model.
References
Authorship and Verification

e Author: NIST IGOR/DANSE Date: pre 2010

* Last Modified by: Paul Butler Date: September 30, 2016

¢ Last Reviewed by: Richard Heenan Date: January 4, 2017

core_shell_bicelle

Circular cylinder with a core-shell scattering length density profile..

4 Chapter 1. SasView User Documentation
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Fig. 1.5: Definition of the angles for oriented 2D cylinders.
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Fig. 1.6: 1D and 2D plots corresponding to the default parameters of the model.

1.1. Model Functions 5
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Parameter | Description Units Default value
scale Source intensity None 1
background | Source background cm’! 0.001
radius Cylinder core radius A 80
thick_rim | Rim shell thickness A 10
thick_face Cylinder face thickness A 10
length Cylinder length A 50
sld_core Cylinder core scattering length density | 10°A2 | 1
sld_face Cylinder face scattering length density | 10°A2 | 4
sld_rim Cylinder rim scattering length density | 10°A2 | 4
sld_solvent | Solvent scattering length density 10°A2 | 1
theta cylinder axis to beam angle degree | 90
phi rotation about beam degree | O

The returned value is scaled to units of cm™! sr’!, absolute scale.
Definition

This model provides the form factor for a circular cylinder with a core-shell scattering length density profile.
Thus this is a variation of a core-shell cylinder or disc where the shell on the walls and ends may be of different
thicknesses and scattering length densities. The form factor is normalized by the particle volume.

i,
i

Fig. 1.7: Schematic cross-section of bicelle. Note however that the model here calculates for rectangular, not
curved, rims as shown below.

Given the scattering length densities (sld) p, the core sld, py, the face sld, p,., the rim sld and p, the solvent sld,
the scattering length density variation along the cylinder axis is:

pefor0<r<R;—L<z<L
p(r) = prfor0<r < R;—(L+2t)<z<—L;L <z<(L+2t)

prfor0<r<R;—(L+2t)<z<—-L;L<z<(L+2t)

6 Chapter 1. SasView User Documentation
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s

radius thick_rim

Fig. 1.8: Cross section of cylindrical symmetry model used here. Users will have to decide how to distribute
“heads” and “tails” between the rim, face and core regions in order to estimate appropriate starting parameters.

The form factor for the bicelle is calculated in cylindrical coordinates, where « is the angle between the () vector
and the cylinder axis, to give:

scale
-F
Vi

1(Q,a) = (Q,a)? - sin(a) + background

where

2J1(QRsina) sin(QLcosa/2)
QRsino Q(L/2)cosa

2J1(QRsina) sin(Q(L/2 + tf)cosa)
QRsina Q(L/2 +tf)cosa

2J1(Q(R + t,)sina) sin(Q(L/2 + tf)cosa)
Q(R +t,)sina Q(L/2 + ty)cosa

F(Q,0) =|(pc — ps)Ve

+ (pf - pr)‘/c+f

+ (pr — ps)Vi

where V/ is the total volume of the bicelle, V;, the volume of the core, V. ¢ the volume of the core plus the volume
of the faces, I? is the radius of the core, L the length of the core, ¢ the thickness of the face, ¢, the thickness of
the rim and .J; the usual first order bessel function.

The output of the 1D scattering intensity function for randomly oriented cylinders is then given by integrating over
all possible 6 and ¢.

For oriented bicelles the theta, and phi orientation parameters will appear when fitting 2D data, see the cylinder
model for further information. Our implementation of the scattering kernel and the 1D scattering intensity use the
c-library from NIST.

References

Authorship and Verification
* Author: NIST IGOR/DANSE Date: pre 2010
* Last Modified by: Paul Butler Date: September 30, 2016
* Last Reviewed by: Richard Heenan Date: January 4, 2017

1.1. Model Functions 7
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Fig. 1.9: Definition of the angles for the oriented core shell bicelle model, note that the cylinder axis of the bicelle
starts along the beam direction when 6 = ¢ = 0.
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Fig. 1.10: 1D and 2D plots corresponding to the default parameters of the model.

Chapter 1. SasView User Documentation
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core_shell_bicelle_elliptical

Elliptical cylinder with a core-shell scattering length density profile..

Parameter | Description Units Default value
scale Source intensity None 1
background | Source background cm! 0.001
radius Cylinder core radius r_minor A 30
X_core Axial ratio of core, X = r_major/r_minor | None 3
thick_rim Rim shell thickness A 8
thick_face Cylinder face thickness A 14
length Cylinder length A 50
sld_core Cylinder core scattering length density 10°A2 | 4
sld_face Cylinder face scattering length density 10°A2 | 7
sld_rim Cylinder rim scattering length density 10°A2 | 1
sld_solvent | Solvent scattering length density 10°A2 | 6
theta Cylinder axis to beam angle degree | 90
phi Rotation about beam degree | O

psi Rotation about cylinder axis degree | O

The returned value is scaled to units of cm™ sr'!, absolute scale.
Definition

This model provides the form factor for an elliptical cylinder with a core-shell scattering length density profile.
Thus this is a variation of the core-shell bicelle model, but with an elliptical cylinder for the core. Outer shells on
the rims and flat ends may be of different thicknesses and scattering length densities. The form factor is normalized
by the total particle volume.

i,
i

Fig. 1.11: Schematic cross-section of bicelle. Note however that the model here calculates for rectangular, not
curved, rims as shown below.

Given the scattering length densities (sld) p., the core sld, py, the face sld, p,., the rim sld and p, the solvent sld,

1.1. Model Functions 9
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i T

radius thick_rim

Fig. 1.12: Cross section of model used here. Users will have to decide how to distribute “heads” and “tails”
between the rim, face and core regions in order to estimate appropriate starting parameters.
the scattering length density variation along the bicelle axis is:
pefor0<r<R;—L<z<L
p(r) = prfor0<r < R;—(L+2t)<z<—L;L <z<(L+2t)
prfor0<r<R;—(L+2t)<z<—-L;L<z<(L+2t)

The form factor for the bicelle is calculated in cylindrical coordinates, where « is the angle between the () vector
and the cylinder axis, and v is the angle for the ellipsoidal cross section core, to give:

1(Q, o, ¢) = S(;Zle - F(Q, o, 9)? - sin(a) + background

where a numerical integration of F(Q, cv,1)? - sin(«) is carried out over alpha and psi for:

2J1(QR'sina) sin(QLcosa/2)
QR’'sina Q(L/2)cosa

2J1(QR'sina) sin(Q(L/2 + tf)cosa)
QR'sina Q(L/2 +tf)cosa

2J1(Q(R' + t,)sina) sin(Q(L/2 + t)cosc)
Q(R' + t,)sina Q(L/2 +tf)cosa

F(Qaavw) = (pc *pf)‘/c

+ (pf - pr)vc-‘rf

+ (pr - ps)‘/t

where

= \/ 1+ X(Qore (1 - XEO,FE)COS(@/})

and V; = 7.(R + t,)(Xcore.R + t,)%.(L + 2.ts) is the total volume of the bicelle, V. = 7. Xcore.R?.L the
volume of the core, Vo y = m.X CO’I’@.R2.(L + 2.t f) the volume of the core plus the volume of the faces, R is
the radius of the core, X core is the axial ratio of the core, L the length of the core, ¢ the thickness of the face,
t,- the thickness of the rim and J; the usual first order bessel function. The core has radii R and X core.R so is
circular, as for the core_shell_bicelle model, for X core =1. Note that you may need to limit the range of X core,
especially if using the Monte-Carlo algorithm, as setting radius to R/ X core and axial ratio to 1/ X core gives an
equivalent solution!

10 Chapter 1. SasView User Documentation
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The output of the 1D scattering intensity function for randomly oriented bicelles is then given by integrating over
all possible a and .

For oriented bicelles the theta, phi and psi orientation parameters will appear when fitting 2D data, see the ellipti-
cal_cylinder model for further information.

\(j\
etecm%

Fig. 1.13: Definition of the angles for the oriented core_shell_bicelle_elliptical particles.

Model verified using Monte Carlo simulation for 1D and 2D scattering.
References
Authorship and Verification

¢ Author: Richard Heenan Date: December 14, 2016

¢ Last Modified by: Richard Heenan Date: December 14, 2016

¢ Last Reviewed by: Paul Kienzle Date: Feb 28, 2018

core_shell_bicelle_elliptical_belt_rough

Elliptical cylinder with a core-shell scattering length density profile..

1.1. Model Functions 11
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Fig. 1.14: 1D and 2D plots corresponding to the default parameters of the model.

Parameter | Description Units Default value
scale Source intensity None 1
background | Source background cm’! 0.001
radius Cylinder core radius r_minor A 30
X_core Axial ratio of core, X = r_major/r_minor | None 3
thick_rim Rim or belt shell thickness A 8
thick_face Cylinder face thickness A 14
length Cylinder length A 50
sld_core Cylinder core scattering length density 10°A2 | 4
sld_face Cylinder face scattering length density 10°A2 | 7
sld_rim Cylinder rim scattering length density 10°A2 | 1
sld_solvent | Solvent scattering length density 10°A2 | 6
sigma Interfacial roughness A 0
theta Cylinder axis to beam angle degree | 90
phi Rotation about beam degree | O

psi Rotation about cylinder axis degree | O

The returned value is scaled to units of cm™ sr'!, absolute scale.
Definition

This model provides the form factor for an elliptical cylinder with a core-shell scattering length density profile.
Thus this is a variation of the core-shell bicelle model, but with an elliptical cylinder for the core. In this version
the “rim” or “belt” does NOT extend the full length of the particle, but has the same length as the core. Outer
shells on the rims and flat ends may be of different thicknesses and scattering length densities. The form factor is
normalized by the total particle volume. This version includes an approximate “interfacial roughness”.

Given the scattering length densities (sld) p., the core sld, py, the face sld, p;, the rim sld and p, the solvent sld,
the scattering length density variation along the bicelle axis is:

pefor0<r < R;—L/2<z<L/2
p(r) = prfor0 <r < R;—(L/2+traee) <2< —L/2;L/2 < 2 < (L/2 + tace)
prfor R<r < R+ tim;—L/2<2z<L/2

The form factor for the bicelle is calculated in cylindrical coordinates, where « is the angle between the () vector

12 Chapter 1. SasView User Documentation
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Fig. 1.15: Schematic cross-section of bicelle with belt. Note however that the model here calculates for rectangu-
lar, not curved, rims as shown below.

1.1. Model Functions 13
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radius thick_rim

Fig. 1.16: Cross section of model used here. Users will have to decide how to distribute “heads” and “tails”
between the rim, face and core regions in order to estimate appropriate starting parameters.

and the cylinder axis, and v is the angle for the ellipsoidal cross section core, to give:

scale
Vi

1(Q,a,¢) = -F(Q,,1)? - sin(a) - exp {—;QQUQ} + background

where a numerical integration of F'(Q, o, 1)? sin(«) is carried out over «v and 1 for:

2J1(QR'sin @) sin(QL cos a/2)
F(Q,a,¥) =|(pc — pr — ps + ps)Ve OR'sin Q(L/2) cos
2J1(QR' sin o) sin(Q(L/2 + ty) cos a)
QR'sina Q(L/2+1tf)cosa
2J1(Q(R' + t,)sina) sin(Q(L/2) cos @)
QR +1t,)sina Q(L/2)cos

+ (pg — ps)Vers

+ (/)r - Ps)Ve+r

where

,_ R _
R = \@\/(1 + Xc20re) + (1 Xc20re) COSWJ)

and Vi = m(R + t,)(Xeore R + )L + 27 Xcore Rt is the total volume of the bicelle, V, = 7Xcoe RZL the
volume of the core, Vo4 5 = 7 X core B2 (L + 2ty) the volume of the core plus the volume of the faces, V,q, =
(R + t,.)(Xcore R + t,-) L the volume of the core plus the rim, R is the radius of the core, X o is the axial ratio
of the core, L the length of the core, t; the thickness of the face, ¢, the thickness of the rim and J; the usual
first order bessel function. The core has radii R and X ... R so is circular, as for the core_shell_bicelle model, for
Xcore = 1. Note that you may need to limit the range of X, especially if using the Monte-Carlo algorithm, as
setting radius to R/ X ore and axial ratio to 1/ X o gives an equivalent solution!

An approximation for the effects of “Gaussian interfacial roughness” o is included, by multiplying 7(Q) by
exp {—%Q%Q}. This applies, in some way, to all interfaces in the model not just the external ones. (Note that

14 Chapter 1. SasView User Documentation
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for a one dimensional system convolution of the scattering length density profile with a Gaussian of standard
deviation o does exactly this multiplication.) Leave o set to zero for the usual sharp interfaces.

The output of the 1D scattering intensity function for randomly oriented bicelles is then given by integrating over
all possible o and .

For oriented bicelles the theta, phi and psi orientation parameters will appear when fitting 2D data, for further
details of the calculation and angular dispersions see Oriented particles .

y

BN

\(j\
etecm%

Fig. 1.17: Definition of the angles for the oriented core_shell_bicelle_elliptical particles.

References
Authorship and Verification
* Author: Richard Heenan Date: October 5, 2017
¢ Last Modified by: Richard Heenan new 2d orientation Date: October 5, 2017
* Last Reviewed by: Richard Heenan 2d calc seems agree with 1d Date: Nov 2, 2017

core_shell_cylinder

Right circular cylinder with a core-shell scattering length density profile.

1.1. Model Functions 15



SasView Documentation, Release 4.2.2

0.4

0.2

: =
< COEJE I=~le2»|~1 W
e ——

I(@Q) (cm™)

-0.2

-0.4

-04 -0.2 00 0.2 04
Q, (A7)

Fig. 1.18: 1D and 2D plots corresponding to the default parameters of the model.

Parameter | Description Units Default value
scale Source intensity None 1
background | Source background cm’! 0.001
sld_core Cylinder core scattering length density 10°A2 | 4
sld_shell Cylinder shell scattering length density | 10°A2 | 4
sld_solvent | Solvent scattering length density 10°A2 | 1
radius Cylinder core radius A 20
thickness Cylinder shell thickness A 20
length Cylinder length A 400
theta cylinder axis to beam angle degree | 60
phi rotation about beam degree | 60

The returned value is scaled to units of cm™! sr’!, absolute scale.

Definition

The output of the 2D scattering intensity function for oriented core-shell cylinders is given by (Kline, 2006°). The
form factor is normalized by the particle volume. Note that in this model the shell envelops the entire core so that
besides a “sleeve’” around the core, the shell also provides two flat end caps of thickness = shell thickness. In other
words the length of the total cyclinder is the length of the core cylinder plus twice the thickness of the shell. If no
end caps are desired one should use the core_shell_bicelle and set the thickness of the end caps (in this case the
“thick_face”) to zero.

1

I(q,a) = SC‘/£F2(q, a).sin(«) + background
where
sin (g3 L cos ) 2.J; (¢Rsin )
F s = \Pc — Ps ‘/c .
(¢:0) = (pe = ps) q%Lcosa qRsin«
(e )V sin (¢ (3L +T) cosa) 2J; (¢(R + T)sin )
,Ds psolv £} q(%L—‘y—T)COSO[ q(R—l—T)Sanz
and

Ve =m(R+T)*(L+27T)

2 S R Kline, J Appl. Cryst., 39 (2006) 895

16 Chapter 1. SasView User Documentation
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and « is the angle between the axis of the cylinder and ¢, V; is the total volume (i.e. including both the core and
the outer shell), V. is the volume of the core, L is the length of the core, R is the radius of the core, T is the
thickness of the shell, p. is the scattering length density of the core, p; is the scattering length density of the shell,
Psoly 18 the scattering length density of the solvent, and background is the background level. The outer radius of

the shell is given by R + 7" and the total length of the outer shell is given by L + 27. J1 is the first order Bessel
function.

SLD solvent
8N SLD shel|
SLD core
= L=2H =

R core +1t

L total = 2H + 2t

Fig. 1.19: Core shell cylinder schematic.

To provide easy access to the orientation of the core-shell cylinder, we define the axis of the cylinder using two
angles 6 and ¢. (see cylinder model)

NB: The 2nd virial coefficient of the cylinder is calculated based on the radius and 2 length values, and used as
the effective radius for S(q) when P(q) - S(q) is applied.

The 6 and ¢ parameters are not used for the 1D output.

T-—-
=
Z
o
=
-0.4 -0.2 00 02 04
-1
Q. (A7)
Fig. 1.20: 1D and 2D plots corresponding to the default parameters of the model.
Reference

Authorship and Verification
e Author: NIST IGOR/DANSE Date: pre 2010
* Last Modified by: Paul Kienzle Date: Aug 8, 2016

1.1. Model Functions 17
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¢ Last Reviewed by: Richard Heenan Date: March 18, 2016

cylinder

Right circular cylinder with uniform scattering length density.

Parameter | Description Units Default value
scale Source intensity None 1

background | Source background cm’! 0.001

sld Cylinder scattering length density | 10°A2 | 4

sld_solvent | Solvent scattering length density | 10°A2 | 1

radius Cylinder radius A 20

length Cylinder length A 400

theta cylinder axis to beam angle degree | 60

phi rotation about beam degree | 60

The returned value is scaled to units of cm™! sr'!, absolute scale.

For information about polarised and magnetic scattering, see the Polarisation/Magnetic Scattering documentation.
Definition

The output of the 2D scattering intensity function for oriented cylinders is given by (Guinier, 1955)

1
P(q,a) = SCSGFQ(Q7 a).sin(a) + background

where
sin (%qL cos oz) J1 (gRsin «)
%qL Cos (v qRsin «

F(g,a) =2(Ap)V

and « is the angle between the axis of the cylinder and ¢, V = mR2L is the volume of the cylinder, L is the
length of the cylinder, R is the radius of the cylinder, and Ap (contrast) is the scattering length density difference
between the scatterer and the solvent. J; is the first order Bessel function.

For randomly oriented particles:

w/2 1
FQ(Q):/O F2(q,a)sin(a)da:/o F%(q,u)du

Numerical integration is simplified by a change of variable to u = cos(a) with sin(a) = v1 — u?.
The output of the 1D scattering intensity function for randomly oriented cylinders is thus given by

1 /2
P(q) = seale / F?(q, &) sin a dov + background
0

%

NB: The 2nd virial coefficient of the cylinder is calculated based on the radius and length values, and used as the
effective radius for S(q) when P(q) - S(q) is applied.

For 2d scattering from oriented cylinders, we define the direction of the axis of the cylinder using two angles 6
(note this is not the same as the scattering angle used in q) and ¢. Those angles are defined in Fig. 1.21 , for further
details see Oriented particles .

The 6 and ¢ parameters to orient the cylinder only appear in the model when fitting 2d data.
Validation

Validation of the code was done by comparing the output of the 1D model to the output of the software provided
by the NIST (Kline, 2006). The implementation of the intensity for fully oriented cylinders was done by averaging
over a uniform distribution of orientations using

w/2 T
Pla)= [ do [ pO)Ra.0)sin0 a0

18 Chapter 1. SasView User Documentation
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Fig. 1.21: Angles 6 and ¢ orient the cylinder relative to the beam line coordinates, where the beam is along the
z axis. Rotation 0, initially in the zz plane, is carried out first, then rotation ¢ about the z axis. Orientation
distributions are described as rotations about two perpendicular axes §; and d» in the frame of the cylinder itself,
which when 6 = ¢ = 0 are parallel to the Y and X axes.

Angles Front view Top View Side View
y y.r\
y
6= 90 ) T
¢= 0 —_—'—: s o X
Y 4
\ y :
6=45 [ S - ki
¢ =90 c . :

Fig. 1.22: Examples for oriented cylinders.

1.1. Model Functions 19
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where p(6, ¢) = 1 is the probability distribution for the orientation and Py(q, #) is the scattering intensity for the
fully oriented system, and then comparing to the 1D result.

I(Q) (em™)
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Fig. 1.23: 1D and 2D plots corresponding to the default parameters of the model.

J. S. Pedersen, Adv. Colloid Interface Sci. 70, 171-210 (1997). G. Fournet, Bull. Soc. Fr. Mineral. Cristallogr.
74, 39-113 (1951).

elliptical_cylinder

Form factor for an elliptical cylinder.

Parameter Description Units Default value
scale Source intensity None 1
background Source background cm’! 0.001
radius_minor | Ellipse minor radius A 20
axis_ratio Ratio of major radius over minor radius | None 1.5
length Length of the cylinder A 400
sld Cylinder scattering length density 10°A2 | 4
sld_solvent Solvent scattering length density 10°A2 [ 1
theta cylinder axis to beam angle degree | 90
phi rotation about beam degree | O

psi rotation about cylinder axis degree | O

The returned value is scaled to units of cm™! sr'!, absolute scale.

The function calculated is

1(q) =

with the functions

1
chyl

_ s J1(a) sin(b)

F(q,a,1) "

[ v [ do [ 066,07 0.0)sina)da
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- H .

Fig. 1.24: Elliptical cylinder geometry a = 7minor and v = iyjor /Tminor 18 the axis_ratio.

where

a = qr'sin(«a)

L
b= a5 cos(w)
= M\/(l +1v2) + (1 — v2)cos (1))

V2

and the angle 1) is defined as the orientation of the major axis of the ellipse with respect to the vector . The angle
« is the angle between the axis of the cylinder and .

For 1D scattering, with no preferred orientation, the form factor is averaged over all possible orientations and
normalized by the particle volume

P(q) = scale < F? > |V

For 2d data the orientation of the particle is required, described using a different set of angles as in the diagrams
below, for further details of the calculation and angular dispersions see Oriented particles .

The 6 and ¢ parameters to orient the cylinder only appear in the model when fitting 2d data.

2

NB: The 2nd virial coefficient of the cylinder is calculated based on the averaged radius (= /72,

and length values, and used as the effective radius for S(Q)) when P(Q) = S(Q) is applied.

Validation

* axis ratio)

Validation of our code was done by comparing the output of the 1D calculation to the angular average of the output
of the 2D calculation over all possible angles.

In the 2D average, more binning in the angle ¢ is necessary to get the proper result. The following figure shows
the results of the averaging by varying the number of angular bins.

References

L A Feigin and D I Svergun, Structure Analysis by Small-Angle X-Ray and Neutron Scattering, Plenum, New
York, (1987) [see table 3.4]

Authorship and Verification
* Author:
¢ Last Modified by:

* Last Reviewed by: Richard Heenan - corrected equation in docs Date: December 21, 2016
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‘d\\
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Fig. 1.25: Note that the angles here are not the same as in the equations for the scattering function. Rotation 6,
initially in the xz plane, is carried out first, then rotation ¢ about the z axis, finally rotation ¥ is now around the
axis of the cylinder. The neutron or X-ray beam is along the z axis.
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Fig. 1.26: Examples of the angles for oriented elliptical cylinders against the detector plane, with ¥ = 0.

01

Fig. 1.27: The intensities averaged from 2D over different numbers of bins and angles.
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Fig. 1.28: 1D and 2D plots corresponding to the default parameters of the model.

flexible_cylinder

Flexible cylinder where the form factor is normalized by the volumeof the cylinder.

Parameter | Description Units Default value
scale Source intensity None 1

background | Source background cm’! 0.001

length Length of the flexible cylinder A 1000
kuhn_length | Kuhn length of the flexible cylinder | A 100

radius Radius of the flexible cylinder A 20

sld Cylinder scattering length density 10°A2 | 1

sld_solvent | Solvent scattering length density 10°A2 | 6.3

The returned value is scaled to units of cm™! sr’!, absolute scale.

This model provides the form factor, P(q), for a flexible cylinder where the form factor is normalized by the
volume of the cylinder. Inter-cylinder interactions are NOT provided for.

P(q) = scale (F?) /V + background

where the averaging (. ..) is applied only for the 1D calculation

The 2D scattering intensity is the same as 1D, regardless of the orientation of the q vector which is defined as

q=1/4a; +a;

The chain of contour length, L, (the total length) can be described as a chain of some number of locally stiff
segments of length [,,, the persistence length (the length along the cylinder over which the flexible cylinder can be
considered a rigid rod). The Kuhn length (b = 2 % [,,) is also used to describe the stiffness of a chain.

Definitions

The returned value is in units of c¢m !

, on absolute scale.
In the parameters, the sld and sld_solvent represent the SLD of the cylinder and solvent respectively.

Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
Research (Kline, 2006).

From the reference:
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Kuhn Length, b=2Ip —»2R+—

-« |p —»

Contour Length =L

‘Method 3 With Excluded Volume’ is used. The model is a parametrization of simulations of a discrete
representation of the worm-like chain model of Kratky and Porod applied in the pseudocontinuous
limit. See equations (13,26-27) in the original reference for the details.

10% ¢

10%}
107}
10"}

I(Q) (em™)
o

Fig. 1.29: 1D plot corresponding to the default parameters of the model.

References

J S Pedersen and P Schurtenberger. Scattering functions of semiflexible polymers with and without excluded
volume effects. Macromolecules, 29 (1996) 7602-7612

Correction of the formula can be found in

W R Chen, P D Butler and L J Magid, Incorporating Intermicellar Interactions in the Fitting of SANS Data from
Cationic Wormlike Micelles. Langmuir, 22(15) 2006 6539-6548

flexible_cylinder_elliptical

Flexible cylinder wth an elliptical cross section and a uniform scattering length density.
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Parameter | Description Units Default value
scale Source intensity None 1

background | Source background cm’! 0.001

length Length of the flexible cylinder A 1000
kuhn_length | Kuhn length of the flexible cylinder A 100

radius Radius of the flexible cylinder A 20

axis_ratio Axis_ratio (major_radius/minor_radius | None 1.5

sld Cylinder scattering length density 10°A2 | 1

sld_solvent | Solvent scattering length density 10°A2 | 6.3

The returned value is scaled to units of cm™! sr'!, absolute scale.

This model calculates the form factor for a flexible cylinder with an elliptical cross section and a uniform scat-
tering length density. The non-negligible diameter of the cylinder is included by accounting for excluded volume
interactions within the walk of a single cylinder. The form factor is normalized by the particle volume such that

P(g) = scale (F'*) /V + background

where the averaging (. ..) is over all possible orientations of the flexible cylinder.

The 2D scattering intensity is the same as 1D, regardless of the orientation of the q vector which is defined as

q=/4+q;

Definitions

The function calculated in a similar way to that for the flexible_cylinder model from the reference given below
using the author’s “Method 3 With Excluded Volume”. The model is a parameterization of simulations of a
discrete representation of the worm-like chain model of Kratky and Porod applied in the pseudo-continuous limit.
See equations (13, 26-27) in the original reference for the details.

Note: There are several typos in the original reference that have been corrected by WRC. Details of the corrections
are in the reference below. Most notably

* Equation (13): the term (1 — w(QR)) should swap position with w(QR)

* Equations (23) and (24) are incorrect; WRC has entered these into Mathematica and solved analytically.
The results were then converted to code.

¢ Equation (27) should be g0 = max(a3/sqrt(RgSquare), 3) instead of max(a3 * b/ sqrt(RgSquare), 3)

* The scattering function is negative for a range of parameter values and g-values that are experimentally
accessible. A correction function has been added to give the proper behavior.

Kuhn Length, b=2 Ip —»2Re+—

<« Ip —»

Contour Length =L
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The chain of contour length, L, (the total length) can be described as a chain of some number of locally stiff
segments of length [,,, the persistence length (the length along the cylinder over which the flexible cylinder can be
considered a rigid rod). The Kuhn length (b = 2 % [,,) is also used to describe the stiffness of a chain.

The cross section of the cylinder is elliptical, with minor radius a . The major radius is larger, so of course, the
axis ratio (parameter 5) must be greater than one. Simple constraints should be applied during curve fitting to
maintain this inequality.

The returned value is in units of cm !, on absolute scale.

In the parameters, the sld and sld_solvent represent the SLD of the chain/cylinder and solvent respectively. The
scale, and the contrast are both multiplicative factors in the model and are perfectly correlated. One or both of
these parameters must be held fixed during model fitting.

No inter-cylinder interference effects are included in this calculation.

4

10

10°
107}
10"}
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o

Fig. 1.30: 1D plot corresponding to the default parameters of the model.

References

J S Pedersen and P Schurtenberger. Scattering functions of semiflexible polymers with and without excluded
volume effects. Macromolecules, 29 (1996) 7602-7612

Correction of the formula can be found in

W R Chen, P D Butler and L J Magid, Incorporating Intermicellar Interactions in the Fitting of SANS Data from
Cationic Wormlike Micelles. Langmuir, 22(15) 2006 6539-6548
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hollow_cylinder

Parameter | Description Units Default value
scale Source intensity None 1

background | Source background cm’! 0.001

radius Cylinder core radius A 20

thickness Cylinder wall thickness A 10

length Cylinder total length A 400

sld Cylinder sld 10°A2 | 6.3
sld_solvent | Solvent sld 10°A2 | 1

theta Cylinder axis to beam angle | degree | 90

phi Rotation about beam degree | O

The returned value is scaled to units of cm™! sr'!, absolute scale.
Definition

This model provides the form factor, P(q), for a monodisperse hollow right angle circular cylinder (rigid tube)
where the The inside and outside of the hollow cylinder are assumed to have the same SLD and the form factor is
thus normalized by the volume of the tube (i.e. not by the total cylinder volume).

P(q) = scale <F 2> /Vinenn + background

where the averaging (. . .) is applied only for the 1D calculation. If Intensity is given on an absolute scale, the scale
factor here is the volume fraction of the shell. This differs from the core_shell_cylinder in that, in that case, scale
is the volume fraction of the entire cylinder (core+shell). The application might be for a bilayer which wraps into
a hollow tube and the volume fraction of material is all in the shell, whereas the core_shell_cylinder model might
be used for a cylindrical micelle where the tails in the core have a different SLD than the headgroups (in the shell)
and the volume fraction of material comes fromm the whole cyclinder. NOTE: the hollow_cylinder represents a
tube whereas the core_shell_cylinder includes a shell layer covering the ends (end caps) as well.

The 1D scattering intensity is calculated in the following way (Guinier, 1955)

1 . 2
P((I) = (Scale)‘/shellAp2/ o2 [q,za Router(l - 12)1/27 Rcore(]- - x2)1/2} |:SH1(qI{x):| dx
0 qHx
1
V(q,y,2] = ﬁ [A(qy) - VQA(C]Z)]

Aa) = 2J1(a)/a
Y= Rcore/ Rouler
Vihen = m (Rguter - Rc20re) L
Ji(z) = (sin(z) — = - cos(;v))/x2
where scale is a scale factor, H = L/2 and .J; is the 1st order Bessel function.

NB: The 2nd virial coefficient of the cylinder is calculated based on the outer radius and full length, which give
an the effective radius for structure factor S(¢q) when P(q) - S(q) is applied.

In the parameters,the radius is R.ore While thickness is Royer — Reore-

To provide easy access to the orientation of the core-shell cylinder, we define the axis of the cylinder using two
angles 6 and ¢ (see cylinder model).

References

Authorship and Verification
e Author: NIST IGOR/DANSE Date: pre 2010
¢ Last Modified by: Paul Butler Date: September 06, 2018 (corrected VR calculation)
* Last Reviewed by: Paul Butler Date: September 06, 2018
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Fig. 1.31: 1D and 2D plots corresponding to the default parameters of the model.

pearl_necklace

Colloidal spheres chained together with no preferential orientation

Parameter | Description Units Default value
scale Source intensity None 1

background | Source background cm’ 0.001

radius Mean radius of the chained spheres A 80

edge_sep Mean separation of chained particles A 350
thick_string | Thickness of the chain linkage A 2.5
num_pearls | Number of pearls in the necklace (must be integer) | none 3

sld Scattering length density of the chained spheres 10°A2 [ 1

sld_string Scattering length density of the chain linkage 10°A2 | 1

sld_solvent | Scattering length density of the solvent 10°A2 | 6.3

The returned value is scaled to units of cm™! sr'!, absolute scale.

This model provides the form factor for a pearl necklace composed of two elements: N pearls (homogeneous
spheres of radius R) freely jointed by M rods (like strings - with a total mass Mw = M * m, + N * mg, and the string
segment length (or edge separation) [ (= A - 2R)). A is the center-to-center pearl separation distance.

Definition

The output of the scattering intensity function for the pearl_necklace is given by (Schweins, 2004)

I(q) =

scale ’ (Sss(q) + Srp(g) + Srs(q))

(M~mf—|—N-ms)2

+ bkg

1.1. Model Functions
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Fig. 1.32: Pearl Necklace schematic

where
a9 N N 1— (sin(qA)/qA)N  sin(qA)
Sss(g) = sm¢ (q>[1 —sin(qA)/qA 2 (1—sin(qA)/qA)2  qA ]
sin 2 — (sin M
S15(a) = 2 (2A () — (TN BB ey DAL
N-1 1 — (sin(qA)/qA)N~L  sin(qA)

Sl = ma P V) TG G A T T - sin(aA) /g AP qA |
sin(qR) — (¢R) - cos(qRR)

P(g) =3-
@ (qR)?
ql sin(t) dt
A _ JO t
(9) T
q(A—R) sin(t) dt
_ JqR t

where the mass m; is (SLD; - SLDgglvent) * (volume of the N pearls/rods). V is the total volume of the necklace.
The 2D scattering intensity is the same as P(q) above, regardless of the orientation of the ¢ vector.

The returned value is scaled to units of cm™ and the parameters of the pear]_necklace model are the following
NB: num_pearls must be an integer.

References

R Schweins and K Huber, Particle Scattering Factor of Pearl Necklace Chains, Macromol. Symp. 211 (2004)
25-42 2004

pringle

The Pringle model provides the form factor, P(q), for a ‘pringle’ or ‘saddle-shaped’ disc that is bent in two
directions.
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Fig. 1.33: 1D plot corresponding to the default parameters of the model.

Parameter | Description Units Default value
scale Source intensity None 1

background | Source background cm’! 0.001

radius Pringle radius A 60

thickness Thickness of pringle A 10

alpha Curvature parameter alpha | None 0.001

beta Curvature paramter beta None 0.02

sld Pringle sld 10°A2 | 1

sld_solvent | Solvent sld 10°A2 | 6.3

The returned value is scaled to units of cm™! sr'!, absolute scale.
Definition

The form factor for this bent disc is essentially that of a hyperbolic paraboloid and calculated as

w/2 . 0
P(q) = (AP)QV/ dvp sin ysinc? <qd c;mb) (Sg + 03) +2 Z (STQL T CZ)
0 n=1
where
1 R
C, = o} / rdr cos(gria cosp).J, (qr2ﬂ cos 1/1) Jan, (grsin )
0
1 R
Sp = o) rdr sin(qrza cos ), (qr2ﬁ cos z/J) Jon (qrsina)

and Ap is ppringle — Psolvent, V' is the volume of the disc, 7 is the angle between the normal to the disc and the q
vector, d and R are the “pringle” thickness and radius respectively, o and [ are the two curvature parameters, and
J,, is the n™ order Bessel function of the first kind.

Reference
Karen Edler, Universtiy of Bath, Private Communication. 2012. Derivation by Stefan Alexandru Rautu.

¢ Author: Andrew Jackson Date: 2008
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Fig. 1.34: Schematic of model shape (Graphic from Matt Henderson, matt@matthen.com)
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Fig. 1.35: 1D plot corresponding to the default parameters of the model.
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» Last Modified by: Wojciech Wpotrzebowski Date: March 20, 2016
* Last Reviewed by: Andrew Jackson Date: September 26, 2016

stacked_disks

Form factor for a stacked set of non exfoliated core/shell disks

Parameter | Description Units Default value
scale Source intensity None 1
background | Source background cm’ 0.001
thick core Thickness of the core disk A 10
thick_layer | Thickness of layer each side of core A 10
radius Radius of the stacked disk A 15
n_stacking | Number of stacked layer/core/layer disks None 1
sigma_d Sigma of nearest neighbor spacing A 0
sld_core Core scattering length density 10°A2 | 4
sld_layer Layer scattering length density 10°A2 [ 0
sld_solvent | Solvent scattering length density 10°A2 [ 5
theta Orientation of the stacked disk axis w/respect incoming beam | degree | 0

phi Rotation about beam degree | O

The returned value is scaled to units of cm™ sr'!, absolute scale.
Definition

This model provides the form factor, P(q), for stacked discs (tactoids) with a core/layer structure which is con-
structed itself as P(q)S(Q) multiplying a P(q) for individual core/layer disks by a structure factor S(q) proposed
by Kratky and Porod in 1949' assuming the next neighbor distance (d-spacing) in the stack of parallel discs obeys
a Gaussian distribution. As such the normalization of this “composite” form factor is relative to the individual
disk volume, not the volume of the stack of disks. This model is appropriate for example for non non exfoliated
clay particles such as Laponite.

P aolvent
Layer (d;pl)
Core {Zh;pc)
Layer (d;pl)
2R

Fig. 1.36: Geometry of a single core/layer disk

The scattered intensity I(q) is calculated as
w/2 )
I(Q) = N/ [Apt (‘/tft(% a) - chc(‘]» O‘)) + Apc‘/cfc(q’ a)] S(Qv a) sina da + background
0

where the contrast

Api = Pi — Psolvent

and N is the number of individual (single) discs per unit volume, « is the angle between the axis of the disc and

1o Kratky and G Porod, J. Colloid Science, 4, (1949) 35
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q, and V; and V, are the total volume and the core volume of a single disc, respectively, and

o= () (i)
o) = (s (M)

where d = thickness of the layer (thick_layer), 2h = core thickness (thick_core), and R = radius of the disc (radius).
1 n
S(q,a) =1+ 5 Z(n — k) cos (kDgq cos o) exp [—k(q)*(D cos a 04)? /2]
k=1

where n is the total number of the disc stacked (n_stacking), D = 2(d + h) is the next neighbor center-to-center
distance (d-spacing), and o4 = the Gaussian standard deviation of the d-spacing (sigma_d). Note that D cos(a) is
the component of D parallel to ¢ and the last term in the equation above is effectively a Debye-Waller factor term.

Note: 1. Each assembly in the stack is layer/core/layer, so the spacing of the cores is core plus two layers. The
2nd virial coefficient of the cylinder is calculated based on the radius and length = n_stacking * (thick_core + 2 *
thick_layer) values, and used as the effective radius for S(Q) when P(Q) * S(Q) is applied.

2. the resolution smearing calculation uses 76 Gaussian quadrature points to properly smear the model since the
function is HIGHLY oscillatory, especially around the g-values that correspond to the repeat distance of the layers.

2d scattering from oriented stacks is calculated in the same way as for cylinders, for further details of the calcula-
tion and angular dispersions see Oriented particles.

y

<

\d\N
etecm%

Fig. 1.37: Angles 0 and ¢ orient the stack of discs relative to the beam line coordinates, where the beam is along
the z axis. Rotation 0, initially in the zz plane, is carried out first, then rotation ¢ about the z axis. Orientation
distributions are described as rotations about two perpendicular axes §; and d- in the frame of the cylinder itself,
which when 6 = ¢ = 0 are parallel to the Y and X axes.

Our model is derived from the form factor calculations implemented in a c-library provided by the NIST Center
for Neutron Research”

2 S R Kline, J Appl. Cryst., 39 (2006) 895
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Fig. 1.38: 1D and 2D plots corresponding to the default parameters of the model.
References

Authorship and Verification
e Author: NIST IGOR/DANSE Date: pre 2010
¢ Last Modified by: Paul Butler and Paul Kienzle Date: November 26, 2016
¢ Last Reviewed by: Paul Butler and Paul Kienzle Date: November 26, 2016

1.1.2 Ellipsoid Functions

core_shell_ellipsoid

Form factor for an spheroid ellipsoid particle with a core shell structure.

Parameter Description Units Default value
scale Source intensity None 1
background Source background cm! 0.001
radius_equat_core | Equatorial radius of core A 20
X_core axial ratio of core, X = r_polar/r_equatorial None 3
thick_shell thickness of shell at equator A 30
x_polar_shell ratio of thickness of shell at pole to that at equator | None 1
sld_core Core scattering length density 10°A2 | 2
sld_shell Shell scattering length density 10°A2 | 1
sld_solvent Solvent scattering length density 10°A2 | 6.3
theta elipsoid axis to beam angle degree | O

phi rotation about beam degree | 0

The returned value is scaled to units of cm™! sr'!, absolute scale.
Definition

Parameters for this model are the core axial ratio X and a shell thickness, which are more often what we would
like to determine and makes the model better behaved, particularly when polydispersity is applied than the four
independent radii used in the original parameterization of this model.
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(a) . (b) . X_polar_shell x Thick_shell

. X_core X Requat_core
| Requat_core

Thick_shell Thick_shell

The geometric parameters of this model are shown in the diagram above, which shows (a) a cut through at the
circular equator and (b) a cross section through the poles, of a prolate ellipsoid.

When X_core < 1 the core is oblate; when X_core > 1 it is prolate. X_core = I is a spherical core.

For a fixed shell thickness XpolarShell = 1, to scale the shell thickness pro-rata with the radius set or constrain
XpolarShell = X_core.

When including an S(q), the radius in S(q) is calculated to be that of a sphere with the same 2nd virial coefficient
of the outer surface of the ellipsoid. This may have some undesirable effects if the aspect ratio of the ellipsoid
is large (ie, if X << 1 or X >> 1), when the S(g) - which assumes spheres - will not in any case be valid.
Generating a custom product model will enable separate effective volume fraction and effective radius in the S(q).

If SAS data are in absolute units, and the SLDs are correct, then scale should be the total volume fraction of the
“outer particle”. When S(q) is introduced this moves to the S(q) volume fraction, and scale should then be 1.0,
or contain some other units conversion factor (for example, if you have SAXS data).

The calculation of intensity follows that for the solid ellipsoid, but with separate terms for the core-shell and
shell-solvent boundaries.

1
P(q,a) = SC‘E;eFQ(q7 a) + background

where

F(q, o) =f(q, radius_equat_core, radius_equat_core.x_core, a)

+ f(g,radius_equat_core + thick_shell, radius_equat_core.x_core + thick_shell.z_polar_shell, o)

where

3ApV (sin[gr(Ryp, Re, )] — cos[gr(Ryp, Re, &)))

f(QaRE’RP’a) = [qT(Rp;Reaa)P

and

r(Re, Ry, ) = [R? sin? o 4 RZ cos® a 1/2

« is the angle between the axis of the ellipsoid and ¢, V = (4/3)7 R, R? is the volume of the ellipsoid , R,, is the
polar radius along the rotational axis of the ellipsoid, R, is the equatorial radius perpendicular to the rotational
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axis of the ellipsoid and Ap (contrast) is the scattering length density difference, either (sld_core — sld_shell) or
(sld_shell — sld_solvent).

For randomly oriented particles:

w/2
F?(q) = /0 F?(q, @) sin(a)da

For oriented ellipsoids the theta, phi and psi orientation parameters will appear when fitting 2D data, see the
elliptical_cylinder model for further information.
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Fig. 1.39: 1D and 2D plots corresponding to the default parameters of the model.

References see for example: Kotlarchyk, M.; Chen, S.-H. J. Chem. Phys., 1983, 79, 2461. Berr, S. J. Phys.
Chem., 1987, 91, 4760.
Authorship and Verification

e Author: NIST IGOR/DANSE Date: pre 2010

¢ Last Modified by: Richard Heenan (reparametrised model) Date: 2015

¢ Last Reviewed by: Richard Heenan Date: October 6, 2016

ellipsoid

Ellipsoid of revolution with uniform scattering length density.

Parameter Description Units Default value
scale Source intensity None 1

background Source background cm’! 0.001

sld Ellipsoid scattering length density | 10°A2 | 4

sld_solvent Solvent scattering length density 10°A2 | 1

radius_polar Polar radius A 20
radius_equatorial | Equatorial radius A 400

theta ellipsoid axis to beam angle degree | 60

phi rotation about beam degree | 60

The returned value is scaled to units of cm™! sr'!, absolute scale.

The form factor is normalized by the particle volume

1.1. Model Functions 37



SasView Documentation, Release 4.2.2

Definition
The output of the 2D scattering intensity function for oriented ellipsoids is given by (Feigin, 1987)

scale

Pg,a) = % F?(g, a) + background
where
3(singr — qr cosqr)
F(q,a) = ApV
(B,0) =40 (gr)?
for

r = [RZsin® a + R2 cos® o Yz

a is the angle between the axis of the ellipsoid and ¢, V = (4/3)m R, R? is the volume of the ellipsoid, R, is the
polar radius along the rotational axis of the ellipsoid, R, is the equatorial radius perpendicular to the rotational
axis of the ellipsoid and Ap (contrast) is the scattering length density difference between the scatterer and the
solvent.

For randomly oriented particles use the orientational average,

/2
2 = 2(q, ) sin(a) da
(F) = [ F(a.0)sin(a)d

computed via substitution of v = sin(«), du = cos(«) da as

(F?(q)) = / F*(q,u) du

0

with
r=R.[1+u® (R2/R> - 1)]"*

For 2d data from oriented ellipsoids the direction of the rotation axis of the ellipsoid is defined using two angles 6
and ¢ as for the cylinder orientation figure. For the ellipsoid, 6 is the angle between the rotational axis and the z
-axis in the xz plane followed by a rotation by ¢ in the xy plane, for further details of the calculation and angular
dispersions see Oriented particles .

NB: The 2nd virial coefficient of the solid ellipsoid is calculated based on the Z, and 2. values, and used as the
effective radius for S(g) when P(q) - S(q) is applied.

The 6 and ¢ parameters are not used for the 1D output.
Validation

Validation of the code was done by comparing the output of the 1D model to the output of the software provided
by the NIST (Kline, 2006).

The implementation of the intensity for fully oriented ellipsoids was validated by averaging the 2D output using a
uniform distribution p(6, ¢) = 1.0 and comparing with the output of the 1D calculation.

The discrepancy above ¢ = 0.3 cm™! is due to the way the form factors are calculated in the c-library provided
by NIST. A numerical integration has to be performed to obtain P(q) for randomly oriented particles. The NIST
software performs that integration with a 76-point Gaussian quadrature rule, which will become imprecise at high
q where the amplitude varies quickly as a function of g. The SasView result shown has been obtained by summing
over 501 equidistant points. Our result was found to be stable over the range of ¢ shown for a number of points
higher than 500.

Model was also tested against the triaxial ellipsoid model with equal major and minor equatorial radii. It is also
consistent with the cyclinder model with polar radius equal to length and equatorial radius equal to radius.

References

L A Feigin and D I Svergun. Structure Analysis by Small-Angle X-Ray and Neutron Scattering, Plenum Press,
New York, 1987.
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Fig. 1.40: Comparison of the intensity for uniformly distributed ellipsoids calculated from our 2D model and the
intensity from the NIST SANS analysis software. The parameters used were: scale = 1.0, radius_polar = 20 A,
radius_equatorial = 400 A, contrast = 3e-6 A2 and background = 0.0 cm™.
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Fig. 1.41: 1D and 2D plots corresponding to the default parameters of the model.
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Authorship and Verification
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* Converted to sasmodels by: Helen Park Date: July 9, 2014
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triaxial_ellipsoid

Ellipsoid of uniform scattering length density with three independent axes.

Parameter Description Units Default value
scale Source intensity None 1
background Source background cm’! 0.001
sld Ellipsoid scattering length density 10°A2 | 4
sld_solvent Solvent scattering length density 10°A2 | 1
radius_equat_minor | Minor equatorial radius, Ra A 20
radius_equat_major | Major equatorial radius, Rb A 400
radius_polar Polar radius, Rc A 10
theta polar axis to beam angle degree | 60
phi rotation about beam degree | 60
psi rotation about polar axis degree | 60

The returned value is scaled to units of cm™! sr'!, absolute scale.

Definition

’,’;‘rl.ff

i EEEEEEEEE

Fig. 1.42: Ellipsoid with R, as radius_equat_minor, Ry, as radius_equat_major and R, as radius_polar.

Given an ellipsoid
X2 vy? Zz
R R} RZ

the scattering for randomly oriented particles is defined by the average over all orientations €2 of:

=1

|4
P(q) = scale(Ap)Q?/ ®?(gr) dS2 + background
T Ja

where
®(qr) = 3j1(qr)/qr = 3(singr — qrcos qr)/(qr)’
r? = R2e* + REf? + R%g?
V= %wRaRbRC
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The e, f and g terms are the projections of the orientation vector on X, Y and Z respectively. Keeping the
orientation fixed at the canonical axes, we can integrate over the incident direction using polar angle —7 /2 < v <
/2 and equatorial angle 0 < ¢ < 27 (as defined in ref [1]),

27 /2
(®*) = / / % (gr) cosy dydg
0 —7/2

with e = cosysin ¢, f = cosycos ¢ and g = sin~. A little algebra yields
72 = b?(p, sin® ¢ cos® v + 1 + p, sin” 7)

for

2 2

b—2—1andpczc——1

Pa = b2

Due to symmetry, the ranges can be restricted to a single quadrant 0 < v < 7/2 and 0 < ¢ < 7/2, scaling the
resulting integral by 8. The computation is done using the substitution u = sin -y, du = cos -y dvy, giving

/2
(®?) —8/ / ®2(qr)dude

r —bzpasm ¢)(1—u)—i—1—&—pC )

Though for convenience we describe the three radii of the ellipsoid as equatorial and polar, they may be given
in any size order. To avoid multiple solutions, especially with Monte-Carlo fit methods, it may be advisable to
restrict their ranges. For typical small angle diffraction situations there may be a number of closely similar “best
fits”, so some trial and error, or fixing of some radii at expected values, may help.

To provide easy access to the orientation of the triaxial ellipsoid, we define the axis of the cylinder using the angles
0, ¢ and ). These angles are defined analogously to the elliptical_cylinder below, note that angle ¢ is now NOT
the same as in the equations above.

For oriented ellipsoids the theta, phi and psi orientation parameters will appear when fitting 2D data, see the
elliptical_cylinder model for further information.

The radius-of-gyration for this system is R2 = (R, RyR.)*/5.

The contrast Ap is defined as SLD(ellipsoid) - SLD(solvent). In the parameters, R,, is the minor equatorial radius,
Ry, is the major equatorial radius, and R, is the polar radius of the ellipsoid.

NB: The 2nd virial coefficient of the triaxial solid ellipsoid is calculated after sorting the three radii to give the
most appropriate prolate or oblate form, from the new polar radius 2, = R, and effective equatorial radius,
R. = v/ Rq Ry, to then be used as the effective radius for S(g) when P(q) - S(q) is applied.

Validation

Validation of our code was done by comparing the output of the 1D calculation to the angular average of the output
of 2D calculation over all possible angles.

References

[1] Finnigan, J.A., Jacobs, D.J., 1971. Light scattering by ellipsoidal particles in solution, J. Phys. D: Appl. Phys.
4,72-77. doi:10.1088/0022-3727/4/1/310
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Fig. 1.43: Definition of angles for oriented triaxial ellipsoid, where radii are for illustration here a < b << ¢ and
angle W is a rotation around the axis of the particle.
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Fig. 1.44: Some examples for an oriented triaxial ellipsoid.
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Fig. 1.45: 1D and 2D plots corresponding to the default parameters of the model.
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1.1.3 Lamellae Functions

lamellar

Lyotropic lamellar phase with uniform SLD and random distribution

Parameter | Description Units Default value
scale Source intensity None 1

background | Source background cm’! 0.001
thickness total layer thickness A 50

sld Layer scattering length density | 10°A2 | 1

sld_solvent | Solvent scattering length density | 10°A2 | 6

The returned value is scaled to units of cm™! sr'!, absolute scale.
Polydispersity in the bilayer thickness can be applied from the GUIL
Definition

The scattering intensity I(g) for dilute, randomly oriented, “infinitely large” sheets or lamellae is

P(q)

26

2
I(q) = scale T + background

q

The form factor is

2 4 2
P(q) = 2A2p (1 —cos(gd)) = A2p sin? (f)
q q

where § is the total layer thickness and Ap is the scattering length density difference.

This is the limiting form for a spherical shell of infinitely large radius. Note that the division by 4 means that
scale in sasview is the volume fraction of sheet, ¢ = S where S is the area of sheet per unit volume. S is half
the Porod surface area per unit volume of a thicker layer (as that would include both faces of the sheet).

The 2D scattering intensity is calculated in the same way as 1D, where the ¢ vector is defined as

q=\/a +q;

References

F Nallet, R Laversanne, and D Roux, J. Phys. II France, 3, (1993) 487-502
also in J. Phys. Chem. B, 105, (2001) 11081-11088

lamellar_hg

Random lamellar phase with Head and Tail Groups

Parameter | Description Units Default value
scale Source intensity None 1

background | Source background cm’! 0.001
length_tail Tail thickness ( total = H+T+T+H) | A 15
length_head | Head thickness A 10

sld Tail scattering length density 10°A2 | 0.4

sld_head Head scattering length density 10°A2 | 3

sld_solvent | Solvent scattering length density 10°A2 [ 6

The returned value is scaled to units of cm™! sr'!, absolute scale.
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Fig. 1.46: 1D plot corresponding to the default parameters of the model.

This model provides the scattering intensity, (g), for a lyotropic lamellar phase where a random distribution in
solution are assumed. The SLD of the head region is taken to be different from the SLD of the tail region.

Definition

The scattering intensity I(q) is

scale 1
I(q) =2n————
(9) " Gn + 67)

The form factor P(q) is

4 . . .
P(q) = e {Apy [sing(0n + 07) — sin(qdr)] + Apr sin(gor)}
where Or is length_tail, § g is length_head, Apy is the head contrast (sld_head — sld_solvent), and Apr is tail
contrast (sld — sld_solvent).

The total thickness of the lamellar sheet is ;7 + d7 + 07 + dp. Note that in a non aqueous solvent the chemical
“head” group may be the “Tail region” and vice-versa.

The 2D scattering intensity is calculated in the same way as 1D, where the ¢ vector is defined as
q=\/G+aq

References

F Nallet, R Laversanne, and D Roux, J. Phys. II France, 3, (1993) 487-502
also in J. Phys. Chem. B, 105, (2001) 11081-11088

2014/04/17 - Description reviewed by S King and P Butler.

lamellar_hg_stack_caille

Random lamellar head/tail/tail/head sheet with Caille structure factor
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Fig. 1.47: 1D plot corresponding to the default parameters of the model.

Parameter Description Units Default value
scale Source intensity None 1
background Source background cm! 0.001
length_tail Tail thickness A 10
length_head head thickness A 2
Nlayers Number of layers None 30
d_spacing lamellar d-spacing of Caille S(Q) | A 40
Caille_parameter | Caille parameter None 0.001
sld Tail scattering length density 10°A2 | 0.4
sld_head Head scattering length density 10°A2 | 2
sld_solvent Solvent scattering length density 10°A42 | 6

The returned value is scaled to units of cm™! sr'!, absolute scale.

This model provides the scattering intensity, I(q) = P(q)S(q), for a lamellar phase where a random distribution
in solution are assumed. Here a Caille S(g) is used for the lamellar stacks.

The scattering intensity I(q) is

The form factor P(q) is
4 . . .
Pla) = 5 {Apu [sinla(Gr + 7)) = sin(abr)] + Apr sin(aér)}*

and the structure factor S(q) is

N-1

S(g)=1+2 Z (1 - %) cos(gdn) exp <—

1

2q2dZa(n) )
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where
a(n) = Z;’; (In(mn) + vE)
v = 0.5772156649 Euler’s constant
2
q;kpT .
Nep = — F7— Caille constant
" 8rVKB

o is the tail length (or length_tail), 0y is the head thickness (or length_head), Apy is SLD(headgroup) -
SLD(solvent), and Apr is SLD(tail) - SLD(headgroup). Here d is (repeat) spacing, K is smectic bending elastic-
ity, B is compression modulus, and N is the number of lamellar plates (Nlayers).

NB: When the Caille parameter is greater than approximately 0.8 to 1.0, the assumptions of the model are
incorrect. And due to a complication of the model function, users are responsible for making sure that all the
assumptions are handled accurately (see the original reference below for more details).

Non-integer numbers of stacks are calculated as a linear combination of results for the next lower and higher
values.

Be aware that the computations may be very slow.

The 2D scattering intensity is calculated in the same way as 1D, where the ¢ vector is defined as

q=\/a0+q;

I(Q) (em™)

Fig. 1.48: 1D plot corresponding to the default parameters of the model.

References
F Nallet, R Laversanne, and D Roux, J. Phys. II France, 3, (1993) 487-502
also in J. Phys. Chem. B, 105, (2001) 11081-11088

lamellar_stack_caille

Random lamellar sheet with Caille structure factor
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Parameter Description Units Default value
scale Source intensity None 1

background Source background cm’! 0.001
thickness sheet thickness A 30

Nlayers Number of layers None 20

d_spacing lamellar d-spacing of Caille S(Q) | A 400
Caille_parameter | Caille parameter A~ 0.1

sld layer scattering length density 10°A2 | 6.3
sld_solvent Solvent scattering length density | 10°A2 | 1

The returned value is scaled to units of cm™! sr'!, absolute scale.

This model provides the scattering intensity, I(q) = P(q)S(q), for a lamellar phase where a random distribution
in solution are assumed. Here a Caille S(g) is used for the lamellar stacks.

Definition

The scattering intensity I(q) is

P(q)S5(q)
I(q) =2
(q) o
The form factor is
2Ap?
P(q) = q2p (1 —cosqd)
and the structure factor is
N-1
n 2¢2d?a(n)
S(g)=1+2 Z 1 — — ) cos(gdn) exp <—
- ( N) 2
where
a(n) = ZC’; (In(mn) + vE)
7
vg = 0.5772156649 Euler’s constant
2
qok’BT .
Nep = —— Caille constant
" 8xVKB

Here d = (repeat) d_spacing, & = bilayer thickness, the contrast Ap = SLD(headgroup) - SLD(solvent), K =
smectic bending elasticity, B = compression modulus, and N = number of lamellar plates (n_plates).

NB: When the Caille parameter is greater than approximately 0.8 to 1.0, the assumptions of the model are
incorrect. And due to a complication of the model function, users are responsible for making sure that all the
assumptions are handled accurately (see the original reference below for more details).

Non-integer numbers of stacks are calculated as a linear combination of results for the next lower and higher
values.

The 2D scattering intensity is calculated in the same way as 1D, where the ¢ vector is defined as
q=/a +q;

References
F Nallet, R Laversanne, and D Roux, J. Phys. II France, 3, (1993) 487-502
also in J. Phys. Chem. B, 105, (2001) 11081-11088
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Fig. 1.49: 1D plot corresponding to the default parameters of the model.

lamellar_stack_paracrystal

Random lamellar sheet with paracrystal structure factor

Parameter | Description Units Default value
scale Source intensity None 1

background | Source background cm’! 0.001
thickness sheet thickness A 33

Nlayers Number of layers None 20

d_spacing lamellar spacing of paracrystal stack A 250

sigma_d Sigma (polydispersity) of the lamellar spacing A 0

sld layer scattering length density 10°A2 | 1

sld_solvent | Solvent scattering length density 10°A2 | 6.34

The returned value is scaled to units of cm™! sr’!, absolute scale.

This model calculates the scattering from a stack of repeating lamellar structures. The stacks of lamellae (infinite
in lateral dimension) are treated as a paracrystal to account for the repeating spacing. The repeat distance is further
characterized by a Gaussian polydispersity. This model can be used for large multilamellar vesicles.

Definition
In the equations below,

* scale is used instead of the mass per area of the bilayer I';,, (this corresponds to the volume fraction of the
material in the bilayer, not the total excluded volume of the paracrystal),

e sld — sld_solvent is the contrast Ap,

* thickness is the layer thickness ¢,

* Nlayers is the number of layers N,

* d_spacing is the average distance between adjacent layers (D), and

* sigma_d is the relative standard deviation of the Gaussian layer distance distribution op /(D).
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The scattering intensity I(q) is calculated as

B
I(q) = 2nAp°Ty, bqlg(Q) Zn(q)

The form factor of the bilayer is approximated as the cross section of an infinite, planar bilayer of thickness ¢
(compare the equations for the lamellar model).

. 2
sin(qt/2)
Py =|————=
bit (¢) ( qt/2

Zn(q) describes the interference effects for aggregates consisting of more than one bilayer. The equations used
are (3-5) from the Bergstrom reference:
_ 1—w?
14 w? — 2wcos(q(D))

Zn(q) +anySy+ (1 —2zn)Snt1

where
an 2 2
Snla) = S [1+w* — 2w cos(g(D))]
and

an = 4w? — 2(w® + w) cos(qg(D))
— 4w™N T2 cos(Ng(D)) + 2w 13 cos[(N — 1)g(D)] + 2w ! cos[(N + 1)¢(D)]
for the layer spacing distribution w = exp(—0%¢?/2).
Non-integer numbers of stacks are calculated as a linear combination of the lower and higher values
Np=aznN+(1—2y)(N+1)

The 2D scattering intensity is the same as 1D, regardless of the orientation of the g vector which is defined as

q=1/4a; +a;

I(Q) (em™)

Fig. 1.50: 1D plot corresponding to the default parameters of the model.

Reference

M Bergstrom, J S Pedersen, P Schurtenberger, S U Egelhaaf, J. Phys. Chem. B, 103 (1999) 9888-9897
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1.1.4 Paracrystal Functions

bcc_paracrystal

Body-centred cubic lattic with paracrystalline distortion

Parameter | Description Units Default value
scale Source intensity None 1
background | Source background cm’! 0.001
dnn Nearest neighbour distance A 220
d_factor Paracrystal distortion factor None 0.06
radius Particle radius A 40
sld Particle scattering length density 10°A2 | 4
sld_solvent | Solvent scattering length density 10°A2 | 1
theta ¢ axis to beam angle degree | 60
phi rotation about beam degree | 60
psi rotation about ¢ axis degree | 60

The returned value is scaled to units of cm™! sr'!, absolute scale.

Warning: This model and this model description are under review following concerns raised by SasView
users. If you need to use this model, please email help@sasview.org for the latest situation. The SasView
Developers. September 2018.

Definition

Calculates the scattering from a body-centered cubic lattice with paracrystalline distortion. Thermal vibrations
are considered to be negligible, and the size of the paracrystal is infinitely large. Paracrystalline distortion is
assumed to be isotropic and characterized by a Gaussian distribution.

The scattering intensity I(q) is calculated as

scale

I(Q) = pratticeP(Q)Z(Q)

where scale is the volume fraction of spheres, V), is the volume of the primary particle, Viugice is @ volume correction
for the crystal structure, P(q) is the form factor of the sphere (normalized), and Z(q) is the paracrystalline structure
factor for a body-centered cubic structure.

Equation (1) of the 1990 reference’ is used to calculate Z (¢), using equations (29)-(31) from the 1987 paper! for
Z1,Z2,and Z3.

The lattice correction (the occupied volume of the lattice) for a body-centered cubic structure of particles of radius
R and nearest neighbor separation D is

lr R
3 (0v)’

The distortion factor (one standard deviation) of the paracrystal is included in the calculation of Z(q)

Vianice =

Aa = gD
where ¢ is a fractional distortion based on the nearest neighbor distance.
For a crystal, diffraction peaks appear at reduced g-values given by

D
Ltk

2

2 Hideki Matsuoka et. al. Physical Review B, 41 (1990) 3854 -3856 (Corrections to FCC and BCC lattice structure calculation)
! Hideki Matsuoka et. al. Physical Review B, 36 (1987) 1754-1765 (Original Paper)
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Fig. 1.51: Body-centered cubic lattice.

where for a body-centered cubic lattice, only reflections where (h + k + [) = even are allowed and reflections
where (h + k + [) = odd are forbidden. Thus the peak positions correspond to (just the first 5)

/40 1 V2 V3 V4 VB
Indices (110) (200) (211) (220) (310)

Note: The calculation of Z(q) is a double numerical integral that must be carried out with a high density of points
to properly capture the sharp peaks of the paracrystalline scattering. So be warned that the calculation is slow.
Fitting of any experimental data must be resolution smeared for any meaningful fit. This makes a triple integral
which may be very slow.

This example dataset is produced using 200 data points, gmin = 0.001 A", gmax = 0.1 A™" and the above default
values.

The 2D (Anisotropic model) is based on the reference below where I(q) is approximated for 1d scattering. Thus
the scattering pattern for 2D may not be accurate, particularly at low ¢g. For general details of the calculation
and angular dispersions for oriented particles see Oriented particles . Note that we are not responsible for any
incorrectness of the 2D model computation.

References

Authorship and Verification
* Author: NIST IGOR/DANSE Date: pre 2010
* Last Modified by: Paul Butler Date: September 29, 2016
¢ Last Reviewed by: Richard Heenan Date: March 21, 2016

fcc_paracrystal

Face-centred cubic lattic with paracrystalline distortion
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Fig. 1.52: Orientation of the crystal with respect to the scattering plane, when § = ¢ = 0 the c axis is along the
beam direction (the z axis).
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Fig. 1.53: 1D and 2D plots corresponding to the default parameters of the model.
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Parameter | Description Units Default value
scale Source intensity None 1
background | Source background cm’! 0.001
dnn Nearest neighbour distance A 220
d_factor Paracrystal distortion factor None 0.06
radius Particle radius A 40
sld Particle scattering length density | 10°A2 | 4
sld_solvent | Solvent scattering length density | 10°A2 | 1
theta ¢ axis to beam angle degree | 60
phi rotation about beam degree | 60
psi rotation about ¢ axis degree | 60

The returned value is scaled to units of cm™! sr'!, absolute scale.

Warning: This model and this model description are under review following concerns raised by SasView
users. If you need to use this model, please email help@sasview.org for the latest situation. The SasView
Developers. September 2018.

Definition

Calculates the scattering from a face-centered cubic lattice with paracrystalline distortion. Thermal vibrations
are considered to be negligible, and the size of the paracrystal is infinitely large. Paracrystalline distortion is
assumed to be isotropic and characterized by a Gaussian distribution.

The scattering intensity I(q) is calculated as

scale
I(q) = TWatticeP(Q)Z(Q)
p

where scale is the volume fraction of spheres, V), is the volume of the primary particle, Viaice is a volume correction
for the crystal structure, P(q) is the form factor of the sphere (normalized), and Z (q) is the paracrystalline structure
factor for a face-centered cubic structure.

Equation (1) of the 1990 reference” is used to calculate Z(q), using equations (23)-(25) from the 1987 paper' for
Z1, Z2,and Z3.

The lattice correction (the occupied volume of the lattice) for a face-centered cubic structure of particles of radius
R and nearest neighbor separation D is

lor R
3 (0v)’

The distortion factor (one standard deviation) of the paracrystal is included in the calculation of Z(gq)

Vianice =

Aa = gD

where g is a fractional distortion based on the nearest neighbor distance.

For a crystal, diffraction peaks appear at reduced g-values given by
D

97 _ 2 r 242
27

where for a face-centered cubic lattice h, k, [ all odd or all even are allowed and reflections where &, k, [ are mixed
odd/even are forbidden. Thus the peak positions correspond to (just the first 5)

/90 1 4/3 \/8/3 /11/3 /4
Indices (111) (200) (220) (311) (222)

2 Hideki Matsuoka et. al. Physical Review B, 41 (1990) 3854 -3856 (Corrections to FCC and BCC lattice structure calculation)
! Hideki Matsuoka et. al. Physical Review B, 36 (1987) 1754-1765 (Original Paper)
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Fig. 1.54: Face-centered cubic lattice.

Note: The calculation of Z(q) is a double numerical integral that must be carried out with a high density of points
to properly capture the sharp peaks of the paracrystalline scattering. So be warned that the calculation is slow.
Fitting of any experimental data must be resolution smeared for any meaningful fit. This makes a triple integral

which may be very slow.

The 2D (Anisotropic model) is based on the reference below where I(q) is approximated for 1d scattering. Thus
the scattering pattern for 2D may not be accurate particularly at low q. For general details of the calculation
and angular dispersions for oriented particles see Oriented particles . Note that we are not responsible for any
incorrectness of the 2D model computation.

References

Authorship and Verification

* Author: NIST IGOR/DANSE Date: pre 2010

* Last Modified by: Paul Butler Date: September 29, 2016
* Last Reviewed by: Richard Heenan Date: March 21, 2016

sc_paracrystal

Simple cubic lattice with paracrystalline distortion

Parameter | Description Units Default value
scale Source intensity None 1
background | Source background cm’! 0.001
dnn Nearest neighbor distance A 220
d_factor Paracrystal distortion factor None 0.06
radius Radius of sphere A 40
sld Sphere scattering length density | 10°A2 | 3
sld_solvent | Solvent scattering length density | 10°A2 | 6.3
theta c axis to beam angle degree | O

phi rotation about beam degree | 0

psi rotation about ¢ axis degree | O

The returned value is scaled to units of cm™! sr'!, absolute scale.

1.1. Model Functions
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Fig. 1.55: Orientation of the crystal with respect to the scattering plane, when § = ¢ = 0 the c axis is along the
beam direction (the z axis).
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Fig. 1.56: 1D and 2D plots corresponding to the default parameters of the model.
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Warning: This model and this model description are under review following concerns raised by SasView
users. If you need to use this model, please email help@sasview.org for the latest situation. The SasView
Developers. September 2018.

Definition

Calculates the scattering from a simple cubic lattice with paracrystalline distortion. Thermal vibrations are con-
sidered to be negligible, and the size of the paracrystal is infinitely large. Paracrystalline distortion is assumed to
be isotropic and characterized by a Gaussian distribution.

The scattering intensity I(q) is calculated as

I(q) = scale v

+ background

where scale is the volume fraction of spheres, V), is the volume of the primary particle, Viagice is @ volume correction
for the crystal structure, P(q) is the form factor of the sphere (normalized), and Z (q) is the paracrystalline structure
factor for a simple cubic structure.

Equation (16) of the 1987 reference' is used to calculate Z(q), using equations (13)-(15) from the 1987 paper! for
Z1,7Z2,and Z3.

The lattice correction (the occupied volume of the lattice) for a simple cubic structure of particles of radius R and
nearest neighbor separation D is

i
3 D3

The distortion factor (one standard deviation) of the paracrystal is included in the calculation of Z(gq)

Vlaltice =

Aa = gD
where g is a fractional distortion based on the nearest neighbor distance.

The simple cubic lattice is

—_

a

{’E: : C

For a crystal, diffraction peaks appear at reduced g-values given by
D
L:1/h2+k2+12
27

where for a simple cubic lattice any h, k, | are allowed and none are forbidden. Thus the peak positions correspond
to (just the first 5)

/o 1 V2 V3 Vi V5
Indices (100) (110)  (111) (200)  (210)

! Hideki Matsuoka et. al. Physical Review B, 36 (1987) 1754-1765 (Original Paper)
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Note: The calculation of Z(qg) is a double numerical integral that must be carried out with a high density of points
to properly capture the sharp peaks of the paracrystalline scattering. So be warned that the calculation is slow.
Fitting of any experimental data must be resolution smeared for any meaningful fit. This makes a triple integral
which may be very slow.

The 2D (Anisotropic model) is based on the reference below where I(q) is approximated for 1d scattering. Thus
the scattering pattern for 2D may not be accurate particularly at low ¢. For general details of the calculation
and angular dispersions for oriented particles see Oriented particles . Note that we are not responsible for any
incorrectness of the 2D model computation.

Fig. 1.57: Orientation of the crystal with respect to the scattering plane, when § = ¢ = 0 the c axis is along the
beam direction (the z axis).

Reference

Authorship and Verification
¢ Author: NIST IGOR/DANSE Date: pre 2010
* Last Modified by: Paul Butler Date: September 29, 2016
* Last Reviewed by: Richard Heenan Date: March 21, 2016

1.1.5 Parallelepiped Functions

core_shell_parallelepiped

Rectangular solid with a core-shell structure.
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Fig. 1.58: 1D and 2D plots corresponding to the default parameters of the model.

Parameter | Description Units Default value
scale Source intensity None 1
background | Source background cm’! 0.001
sld_core Parallelepiped core scattering length density 10°A2 | 1
sld_a Parallelepiped A rim scattering length density | 10°A2 | 2
sld_b Parallelepiped B rim scattering length density | 10°A2 | 4
sld_c Parallelepiped C rim scattering length density | 10°A2 | 2
sld_solvent | Solvent scattering length density 10°A2 [ 6
length_a Shorter side of the parallelepiped A 35
length_b Second side of the parallelepiped A 75
length_c Larger side of the parallelepiped A 400
thick_rim_a | Thickness of A rim A 10
thick_rim_b | Thickness of B rim A 10
thick_rim_c | Thickness of C rim A 10
theta ¢ axis to beam angle degree | O

phi rotation about beam degree | 0

psi rotation about ¢ axis degree | O

The returned value is scaled to units of cm™! sr'!, absolute scale.
Definition

Calculates the form factor for a rectangular solid with a core-shell structure. The thickness and the scattering
length density of the shell or “rim” can be different on each (pair) of faces. The three dimensions of the core of
the parallelepiped (strictly here a cuboid) may be given in any size order as long as the particles are randomly
oriented (i.e. take on all possible orientations see notes on 2D below). To avoid multiple fit solutions, especially
with Monte-Carlo fit methods, it may be advisable to restrict their ranges. There may be a number of closely
similar “best fits”, so some trial and error, or fixing of some dimensions at expected values, may help.

The form factor is normalized by the particle volume V' such that

scale
I =
(q) v

(P(q,a, B)) + background

where (.. .) is an average over all possible orientations of the rectangular solid, and the usual Ap? V2 term cannot
be pulled out of the form factor term due to the multiple slds in the model.
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The core of the solid is defined by the dimensions A, B, C here shown such that A < B < C.

B

Fig. 1.59: Core of the core shell parallelepiped with the corresponding definition of sides.

There are rectangular “slabs” of thickness ¢ 4 that add to the A dimension (on the BC faces). There are similar
slabs on the AC' (= tp) and AB (= t¢) faces. The projection in the AB plane is

v

—l-‘ | <«
tB

Fig. 1.60: AB cut through the core-shell parallelipiped showing the cross secion of four of the six shell slabs. As
can be seen, this model leaves ‘“‘gaps” at the corners of the solid.

The total volume of the solid is thus given as
V =ABC +2t4BC +2tgAC + 2tc AB

The intensity calculated follows the parallelepiped model, with the core-shell intensity being calculated as the
square of the sum of the amplitudes of the core and the slabs on the edges. The scattering amplitude is computed
for a particular orientation of the core-shell parallelepiped with respect to the scattering vector and then averaged
over all possible orientations, where « is the angle between the z axis and the C' axis of the parallelepiped, and S
is the angle between the projection of the particle in the xy detector plane and the y axis.

fﬂ/Q /2 F?(q,a, B) sina da df3

P(q) = =—=
foﬁ/z sina da df

60 Chapter 1. SasView User Documentation



SasView Documentation, Release 4.2.2

and
F(q,0,8) = (peore — psotvent) S(Q 4, A)S(Qp, B)S(Qc, C)

+ (pa = Psotvent) [S(Qa, A+ 2t4) — 5(Qa, A)] S(@B, B)S(Qc, C)

+ (P8 — psotvent)S(Q 4, A) [S(Q5, B + 2tp) — S(Qp, B)| S(Qc, C)

+ (pc = psotvent)S(Q 4, A)S(QB, B) [S(Qc, C + 2tc) — S(Qc, C)]
with

$@x.1) = L

and

Q4 = gsinasin g
Qp = gsinacos
Qc = qcosa

where pcore, pPa, pp and pc are the scattering lengths of the parallelepiped core, and the rectangular slabs of
thickness t 4, tp and t¢, respectively. psolvent 1S the scattering length of the solvent.

Note: the code actually implements two substitutions: d(cosc) is substituted for -sina do (note that in the
parallelepiped code this is explicitly implemented with 0 = cosc), and 3 is set to 5 = um /2 so that du = 7/2 df3.
Thus both integrals go from 0 to 1 rather than 0 to 7/2.

FITTING NOTES

1. There are many parameters in this model. Hold as many fixed as possible with known values, or you will
certainly end up at a solution that is unphysical.

2. The 2nd virial coefficient of the core_shell_parallelepiped is calculated based on the the averaged effective
radius (= /(A + 2t4)(B + 2tp)/7) and length (C + 2t¢) values, after appropriately sorting the three
dimensions to give an oblate or prolate particle, to give an effective radius for S(q) when P(q) * S(q) is
applied.

3. For 2d data the orientation of the particle is required, described using angles 6, ¢ and ¥ as in the diagrams
below, where 6 and ¢ define the orientation of the director in the laboratry reference frame of the beam
direction (z) and detector plane (z — y plane), while the angle W is effectively the rotational angle around
the particle C axis. For 6 = 0 and ¢ = 0, ¥ = 0 corresponds to the B axis oriented parallel to the y-axis
of the detector with A along the x-axis. For other 6, ¢ values, the order of rotations matters. In particular,
the parallelepiped must first be rotated 6 degrees in the x — z plane before rotating ¢ degrees around the 2z
axis (in the x — y plane). Applying orientational distribution to the particle orientation (i.e jitfer to one or
more of these angles) can get more confusing as jitter is defined NOT with respect to the laboratory frame
but the particle reference frame. It is thus highly recmmended to read Oriented particles for further details
of the calculation and angular dispersions.

Note: For 2d, constraints must be applied during fitting to ensure that the order of sides chosen is not altered, and
hence that the correct definition of angles is preserved. For the default choice shown here, that means ensuring
that the inequality A < B < C' is not violated, The calculation will not report an error, but the results may be not
correct.

Validation

Cross-checked against hollow rectangular prism and rectangular prism for equal thickness overlapping sides, and
by Monte Carlo sampling of points within the shape for non-uniform, non-overlapping sides.

References
Authorship and Verification
* Author: NIST IGOR/DANSE Date: pre 2010
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Fig. 1.61: Definition of the angles for oriented core-shell parallelepipeds. Note that rotation 6, initially in the
x — z plane, is carried out first, then rotation ¢ about the z axis, finally rotation ¥ is now around the C' axis of the
particle. The neutron or X-ray beam is along the z axis and the detecotr defines the = — y plane.
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Fig. 1.62: Examples of the angles for oriented core-shell parallelepipeds against the detector plane.
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Fig. 1.63: 1D and 2D plots corresponding to the default parameters of the model.
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* Converted to sasmodels by: Miguel Gonzalez Date: February 26, 2016
* Last Modified by: Paul Kienzle Date: October 17, 2017
» Last Reviewed by: Paul Butler Date: May 24, 2018 - documentation updated

hollow_rectangular_prism

Hollow rectangular parallelepiped with uniform scattering length density.

Parameter | Description Units Default value
scale Source intensity None 1
background | Source background cm’! 0.001
sld Parallelepiped scattering length density 10°A2 | 6.3
sld_solvent | Solvent scattering length density 10°A2 | 1
length_a Shorter side of the parallelepiped A 35
b2a_ratio Ratio sides b/a A 1
c2a_ratio Ratio sides c/a A 1
thickness Thickness of parallelepiped A 1
theta c axis to beam angle degree | O

phi rotation about beam degree | O

psi rotation about ¢ axis degree | O

The returned value is scaled to units of cm™! sr'!, absolute scale.
Definition

This model provides the form factor, P(q), for a hollow rectangular parallelepiped with a wall of thickness A. The
1D scattering intensity for this model is calculated by forming the difference of the amplitudes of two massive
parallelepipeds differing in their outermost dimensions in each direction by the same length increment 2A (!
Nayuk, 2012).

As in the case of the massive parallelepiped model (rectangular_prism), the scattering amplitude is computed for a
particular orientation of the parallelepiped with respect to the scattering vector and then averaged over all possible
orientations, giving

12 A ,
P(q):W;x/O /0 A% A (q) sin@df de

where 6 is the angle between the z axis and the longest axis of the parallelepiped, ¢ is the angle between the
scattering vector (lying in the xy plane) and the y axis, and

sin(q% cos 9) sin(q% sin 6 sin ¢)
(q% cos 9) (qg sin @ sin (b)

-s(3-2) (5-2) (§-2) [ HlEflend

2

sin(g sin 6 cos
Apalq) = ABC sin (g2 sin 6 cos qb)]

(q% sin @ cos ¢)
sin [q(% — A) sin  sin (;5] ]

q(g — A) sin @ sin ¢

sin[q(% — A) sin @ cos ¢

q(g — A) sin 6 cos ¢

where A, B and C are the external sides of the parallelepiped fulfilling A < B < C, and the volume V of the
parallelepiped is

V =ABC — (A—2A)(B —2A)(C —2A)
The 1D scattering intensity is then calculated as
I(q) = scale x V' x (p, — Psolvem)2 x P(q) + background

where pj, is the scattering length density of the parallelepiped, psolven: is the scattering length density of the solvent,
and (if the data are in absolute units) scale represents the volume fraction (which is unitless) of the rectangular
shell of material (i.e. not including the volume of the solvent filled core).

'R Nayuk and K Huber, Z. Phys. Chem., 226 (2012) 837-854
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For 2d data the orientation of the particle is required, described using angles 6, ¢ and ¥ as in the diagrams below,
for further details of the calculation and angular dispersions see Oriented particles . The angle W is the rotational
angle around the long C axis. For example, U = 0 when the B axis is parallel to the x-axis of the detector.

For 2d, constraints must be applied during fitting to ensure that the inequality A < B < C'is not violated, and
hence the correct definition of angles is preserved. The calculation will not report an error if the inequality is not
preserved, but the results may be not correct.

y

BN
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Fig. 1.64: Definition of the angles for oriented hollow rectangular prism. Note that rotation 6, initially in the xz
plane, is carried out first, then rotation ¢ about the z axis, finally rotation ¥ is now around the axis of the prism.
The neutron or X-ray beam is along the z axis.

Validation

Validation of the code was conducted by qualitatively comparing the output of the 1D model to the curves shown
in (Nayuk, 2012).

References

Authorship and Verification
* Author: Miguel Gonzales Date: February 26, 2016
¢ Last Modified by: Paul Kienzle Date: December 14, 2017
* Last Reviewed by: Paul Butler Date: September 06, 2018

hollow_rectangular_prism_thin_walls

Hollow rectangular parallelepiped with thin walls.
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Fig. 1.65: Examples of the angles for oriented hollow rectangular prisms against the detector plane.
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Fig. 1.66: 1D and 2D plots corresponding to the default parameters of the model.
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Parameter | Description Units Default value
scale Source intensity None 1

background | Source background cm’! 0.001

sld Parallelepiped scattering length density | 10°A2 | 6.3
sld_solvent | Solvent scattering length density 10°A2 | 1

length_a Shorter side of the parallelepiped A 35

b2a_ratio Ratio sides b/a A 1

c2a_ratio Ratio sides c/a A 1

The returned value is scaled to units of cm™! sr’!, absolute scale.
Definition

This model provides the form factor, P(q), for a hollow rectangular prism with infinitely thin walls. It computes
only the 1D scattering, not the 2D. The 1D scattering intensity for this model is calculated according to the
equations given by Nayuk and Huber'.

Assuming a hollow parallelepiped with infinitely thin walls, edge lengths A < B < C and presenting an orienta-
tion with respect to the scattering vector given by 6 and ¢, where 6 is the angle between the z axis and the longest
axis of the parallelepiped C, and ¢ is the angle between the scattering vector (lying in the zy plane) and the y
axis, the form factor is given by

P = sz [ [ 1A@ + Arta)simodsds

where
V =2AB+2AC+2BC
sin (%qA sin ¢ sin 9) sin (%qB €os ¢ sin 6) cos (%qC cos (9)
Ap(q) =8 x 2
g? sin” 0 sin ¢ cos ¢
2 sin (1(]6’ cos 9)
A = A 2
7(q) r(gq) x ¢ cosd
and
24 Asin ¢sin 0) sin (5¢B cos ¢ sin f in (LgAsin ¢sin ) cos (1¢B cos sin 0
AF(q):4COS(2q sin ¢ sin )s1n(2q coSs ¢ sin )+4s1n(2q sin ¢ sin )cos(zq Cos ¢ sin )

q cos ¢ sin 6 g sin ¢ sin 6

The 1D scattering intensity is then calculated as

I(q) = scale x V' x (pp — psotvent)® X P(q)

where V' is the surface area of the rectangular prism, p, is the scattering length density of the parallelepiped,
Psolvent 18 the scattering length density of the solvent, and (if the data are in absolute units) scale is related to the
total surface area.

The 2D scattering intensity is not computed by this model.
Validation

Validation of the code was conducted by qualitatively comparing the output of the 1D model to the curves shown
in (Nayuk, 2012").

References
Authorship and Verification
* Author: Miguel Gonzales Date: February 26, 2016
¢ Last Modified by: Paul Kienzle Date: October 15, 2016
* Last Reviewed by: Paul Butler Date: September 07, 2018

'R Nayuk and K Huber, Z. Phys. Chem., 226 (2012) 837-854
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Fig. 1.67: 1D plot corresponding to the default parameters of the model.

parallelepiped

Rectangular parallelepiped with uniform scattering length density.

Parameter | Description Units Default value
scale Source intensity None 1
background | Source background cm! 0.001
sld Parallelepiped scattering length density 10°A2 | 4
sld_solvent | Solvent scattering length density 10°A2 [ 1
length_a Shorter side of the parallelepiped A 35
length_b Second side of the parallelepiped A 75
length_c Larger side of the parallelepiped A 400
theta ¢ axis to beam angle degree | 60
phi rotation about beam degree | 60
psi rotation about ¢ axis degree | 60

The returned value is scaled to units of cm™! sr'!, absolute scale.
Definition

This model calculates the scattering from a rectangular solid (Fig. 1.68). If you need to apply polydispersity, see
also rectangular_prism. For information about polarised and magnetic scattering, see the Polarisation/Magnetic
Scattering documentation.

The three dimensions of the parallelepiped (strictly here a cuboid) may be given in any size order as long as the
particles are randomly oriented (i.e. take on all possible orientations see notes on 2D below). To avoid multiple
fit solutions, especially with Monte-Carlo fit methods, it may be advisable to restrict their ranges. There may be
a number of closely similar “best fits”, so some trial and error, or fixing of some dimensions at expected values,
may help.

The form factor is normalized by the particle volume and the 1D scattering intensity I(q) is then calculated as:

scale
I(q) =
(9) v

where the volume V' = ABC, the contrast is defined as Ap = Pp — Psolvent> P(q, «, B) is the form factor cor-
responding to a parallelepiped oriented at an angle o (angle between the long axis C and ), and [ (the angle

(Ap- V)2 (P(q, , B)) + background

68 Chapter 1. SasView User Documentation



SasView Documentation, Release 4.2.2

B

Fig. 1.68: Parallelepiped with the corresponding definition of sides.

between the projection of the particle in the xy detector plane and the y axis) and the averaging (.. .) is applied
over all orientations.

Assuming a = A/B < 1,b= B/B =1, and ¢ = C/B > 1, the form factor is given by (Mittelbach and Porod,
19611

P(g,a) = / o (/1= o%,a) [S(uco/2)] do

with

sinx
S =
() = =
p=qB

where substitution of o = cosa and 8 = 7/2 u have been applied.

For oriented particles, the 2D scattering intensity, I(¢., g), is given as:

scale
\%4

(ge4y) = 22 (Ap- V)? P(qa. g,) + background

Where P(q5, qy) for a given orientation of the form factor is calculated as

P( ) {sin(%chosa)r {sin(%chosB)r {sin(%chosv)r
qz,4y) =
Y (%QA cos @) (%QB cos ) (%chosw)
with
cosa = A- g,
cosB=B-q,
cosy = C- q
FITTING NOTES

1. The 2nd virial coefficient of the parallelepiped is calculated based on the averaged effective radius, after
appropriately sorting the three dimensions, to give an oblate or prolate particle, (= y/AB/m) and length
(= C) values, and used as the effective radius for S(g) when P(q) - S(q) is applied.

1 P Mittelbach and G Porod, Acta Physica Austriaca, 14 (1961) 185-211

1.1. Model Functions 69



SasView Documentation, Release 4.2.2

2. For 2d data the orientation of the particle is required, described using angles 6, ¢ and ¥ as in the diagrams
below, where 6 and ¢ define the orientation of the director in the laboratry reference frame of the beam
direction (z) and detector plane (z — y plane), while the angle W is effectively the rotational angle around
the particle C axis. For § = 0 and ¢ = 0, ¥ = 0 corresponds to the B axis oriented parallel to the y-axis
of the detector with A along the x-axis. For other 6, ¢ values, the order of rotations matters. In particular,
the parallelepiped must first be rotated 6 degrees in the x — z plane before rotating ¢ degrees around the z
axis (in the x — y plane). Applying orientational distribution to the particle orientation (i.e jitfer to one or
more of these angles) can get more confusing as jitter is defined NOT with respect to the laboratory frame
but the particle reference frame. It is thus highly recmmended to read Oriented particles for further details
of the calculation and angular dispersions.

Note: For 2d, constraints must be applied during fitting to ensure that the order of sides chosen is not altered, and
hence that the correct definition of angles is preserved. For the default choice shown here, that means ensuring
that the inequality A < B < C' is not violated, The calculation will not report an error, but the results may be not
correct.

\d\N
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Fig. 1.69: Definition of the angles for oriented parallelepiped, shown with A < B < C.

Validation

Validation of the code was done by comparing the output of the 1D calculation to the angular average of the output
of a 2D calculation over all possible angles.

References
Authorship and Verification
¢ Author: NIST IGOR/DANSE Date: pre 2010
» Last Modified by: Paul Kienzle Date: April 05, 2017
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Fig. 1.70: Examples of the angles for an oriented parallelepiped against the detector plane.
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Fig. 1.71: 1D and 2D plots corresponding to the default parameters of the model.
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* Last Reviewed by: Miguel Gonzales and Paul Butler Date: May 24, 2018 - documentation updated

rectangular_prism

Rectangular parallelepiped with uniform scattering length density.

Parameter | Description Units Default value
scale Source intensity None 1
background | Source background cm’! 0.001
sld Parallelepiped scattering length density | 10°A2 | 6.3
sld_solvent | Solvent scattering length density 10°A2 | 1
length_a Shorter side of the parallelepiped A 35
b2a_ratio Ratio sides b/a None 1
c2a_ratio Ratio sides c/a None 1
theta c axis to beam angle degree | O

phi rotation about beam degree | O

psi rotation about ¢ axis degree | O

The returned value is scaled to units of cm™! sr'!, absolute scale.
This model provides the form factor, P(q), for a rectangular prism.

Note that this model is almost totally equivalent to the existing parallelepiped model. The only difference is that
the way the relevant parameters are defined here (a, b/a, ¢/a instead of a, b, ¢) which allows use of polydis-
persity with this model while keeping the shape of the prism (e.g. setting b/a = 1 and ¢/a = 1 and applying
polydispersity to a will generate a distribution of cubes of different sizes).

Definition

The 1D scattering intensity for this model was calculated by Mittelbach and Porod (Mittelbach, 1961), but the
implementation here is closer to the equations given by Nayuk and Huber (Nayuk, 2012). Note also that the angle
definitions used in the code and the present documentation correspond to those used in (Nayuk, 2012) (see Fig. 1
of that reference), with 6 corresponding to « in that paper, and not to the usual convention used for example in the
parallelepiped model.

In this model the scattering from a massive parallelepiped with an orientation with respect to the scattering vector
given by 6 and ¢

sin (%qC oS 9) " sin (%qA oS 9) " sin (%qB cos 0)

)

Ap(q) =

%qC’ cos 6 %qA cos 6 %qB cos 6

where A, B and C are the sides of the parallelepiped and must fulfill A < B < C, 6 is the angle between the z
axis and the longest axis of the parallelepiped C, and ¢ is the angle between the scattering vector (lying in the zy
plane) and the y axis.

The normalized form factor in 1D is obtained averaging over all possible orientations

P(g) = 3/2 / A2(q) sin0d6 do
™ Jo 0

And the 1D scattering intensity is calculated as

I(q) = scale x V x (pp — psotvent)®> X P(q)

where V' is the volume of the rectangular prism, pj, is the scattering length of the parallelepiped, psolven: 1S the
scattering length of the solvent, and (if the data are in absolute units) scale represents the volume fraction (which
is unitless).

For 2d data the orientation of the particle is required, described using angles 6, ¢ and V¥ as in the diagrams below,
for further details of the calculation and angular dispersions see Oriented particles . The angle W is the rotational
angle around the long C axis. For example, ¥ = 0 when the B axis is parallel to the x-axis of the detector.
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For 2d, constraints must be applied during fitting to ensure that the inequality A < B < C'is not violated, and
hence the correct definition of angles is preserved. The calculation will not report an error, but the results may be
not correct.

d\-
etecm%

Fig. 1.72: Definition of the angles for oriented core-shell parallelepipeds. Note that rotation 6, initially in the xz
plane, is carried out first, then rotation ¢ about the z axis, finally rotation ¥ is now around the axis of the cylinder.
The neutron or X-ray beam is along the z axis.

Validation

Validation of the code was conducted by comparing the output of the 1D model to the output of the existing
parallelepiped model.

References
P Mittelbach and G Porod, Acta Physica Austriaca, 14 (1961) 185-211
R Nayuk and K Huber, Z. Phys. Chem., 226 (2012) 837-854

1.1.6 Sphere Functions

adsorbed_layer

Scattering from an adsorbed layer on particles

1.1. Model Functions 73



SasView Documentation, Release 4.2.2

Angles Front view Top View Side View

y A

=90
L

G=45 _*_) '\Tr)mr

Fig. 1.73: Examples of the angles for oriented rectangular prisms against the detector plane.
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Fig. 1.74: 1D and 2D plots corresponding to the default parameters of the model.
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Parameter Description Units Default value
scale Source intensity None 1

background Source background cm’! 0.001
second_moment Second moment of polymer distribution | A 23
adsorbed_amount | Adsorbed amount of polymer mg-m? | 1.9
density_shell Bulk density of polymer in the shell gcm™ [ 0.7

radius Core particle radius A 500
volfraction Core particle volume fraction None 0.14

sld_shell Polymer shell SLD 10°A2 | 1.5
sld_solvent Solvent SLD 10°A2 | 6.3

The returned value is scaled to units of cm™! sr'!, absolute scale.
Definition

This model describes the scattering from a layer of surfactant or polymer adsorbed on large, smooth, notionally
spherical particles under the conditions that (i) the particles (cores) are contrast-matched to the dispersion medium,
(ii) S(Q) ~ 1 (ie, the particle volume fraction is dilute), (iii) the particle radius is >> layer thickness (ie, the
interface is locally flat), and (iv) scattering from excess unadsorbed adsorbate in the bulk medium is absent or has
been corrected for.

Unlike many other core-shell models, this model does not assume any form for the density distribution of the
adsorbed species normal to the interface (cf, a core-shell model normally assumes the density distribution to be
a homogeneous step-function). For comparison, if the thickness of a (traditional core-shell like) step function
distribution is ¢, the second moment about the mean of the density distribution (ie, the distance of the centre-of-
mass of the distribution from the interface), o = /12/12.

2 | 6Tdcore r? 2 9
I(Q) = scale - (ppoly - psolvent) Q2 W eXp(—Q g ) + background
poly £ Lcore

where scale is a scale factor, p,oy is the sld of the polymer (or surfactant) layer, psoy is the sld of the sol-
vent/medium and cores, @core is the volume fraction of the core particles, dpory is the bulk density of the polymer,
I" is the adsorbed amount, and o is the second moment of the thickness distribution.

Note that all parameters except o are correlated so fitting more than one of these parameters will generally fail.
Also note that unlike other shape models, no volume normalization is applied to this model (the calculation is
exact).

The code for this model is based originally on a a fortran implementation by Steve King at ISIS in the SANDRA
package c. 1990.

References

Authorship and Verification
* Author: Jae-Hi Cho Date: pre 2010
* Last Modified by: Paul Kienzle Date: April 14, 2016
» Last Reviewed by: Steve King Date: March 18, 2016

binary_hard_sphere

binary mixture of hard spheres with hard sphere interactions.
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Fig. 1.75: 1D plot corresponding to the default parameters of the model.
Parameter Description Units Default value
scale Source intensity None 1
background Source background cm’! 0.001
radius_Ig radius of large particle A 100
radius_sm radius of small particle A 25
volfraction_lg | volume fraction of large particle None 0.1
volfraction_sm | volume fraction of small particle None 0.2
sld_lg scattering length density of large particle | 10°A2 | 3.5
sld_sm scattering length density of small particle | 10°A2 | 0.5
sld_solvent Solvent scattering length density 10°A2 | 6.36

The returned value is scaled to units of cm™! sr'!, absolute scale.
Definition

The binary hard sphere model provides the scattering intensity, for binary mixture of hard spheres including hard
sphere interaction between those particles, using thw Percus-Yevick closure. The calculation is an exact multi-
component solution that properly accounts for the 3 partial structure factors as follows:

I(q) = (1 — 2) f£(q)S11(q) + 2[z(1 — 2)]'2 f1(q) f2(@) S12(q) + = 3 (q) S22(q)

where S;; are the partial structure factors and f; are the scattering amplitudes of the particles. The subscript 1 is
for the smaller particle and 2 is for the larger. The number fraction of the larger particle, (z = n2/(nl + n2),
where n = the number density) is internally calculated based on the diameter ratio and the volume fractions.

(¢2/P)®
(1= (p2/9) + (92/0)a?)

¢ = @1 + ¢ = total volume fraction

xr =

a = Ry /Ry = size ratio

The 2D scattering intensity is the same as 1D, regardless of the orientation of the g vector which is defined as
q=/¢+q;
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NOTE 1: The volume fractions and the scattering contrasts are loosely correlated, so holding as many parameters
fixed to known values during fitting will improve the robustness of the fit.

NOTE 2: Since the calculation uses the Percus-Yevick closure, all of the limitations of that closure relation apply
here. Specifically, one should be wary of results for (total) volume fractions greater than approximately 40%.
Depending on the size ratios or number fractions, the limit on total volume fraction may be lower.

NOTE 3: The heavy arithmatic operations also mean that at present the function is poorly behaved at very low gr.
In some cases very large qr may also be poorly behaved. These should however be outside any useful region of qr.

The code for this model is based originally on a c-library implementation by the NIST Center for Neutron Research
(Kline, 2006).

See the references for details.

10°

10'F

1Q) (em™)

Fig. 1.76: 1D plot corresponding to the default parameters of the model.

References

Authorship and Verification
* Author: NIST IGOR/DANSE Date: pre 2010
» Last Modified by: Paul Butler Date: March 20, 2016
¢ Last Reviewed by: Paul Butler Date: March 20, 2016

core_multi_shell

This model provides the scattering from a spherical core with 1 to 4 concentric shell structures. The SLDs of the
core and each shell are individually specified.
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Parameter | Description Units Default value
scale Source intensity None 1

background | Source background cm’! 0.001
sld_core Core scattering length density 10°A2 | 1

radius Radius of the core A 200
sld_solvent | Solvent scattering length density 10°A2 | 6.4

n number of shells None 1

sld[n] scattering length density of shell k | 10°A2 | 1.7
thickness[n] | Thickness of shell k A 40

The returned value is scaled to units of cm™! sr'!, absolute scale.
Definition

This model is a trivial extension of the CoreShell function to a larger number of shells. The scattering length
density profile for the default sld values (w/ 4 shells).

SLD{107"A %)

0 20 40 60 80 100 120 140
Radins{A)

Fig. 1.77: SLD profile of the core_multi_shell object from the center of sphere out for the default SLDs.*

The 2D scattering intensity is the same as P(q) above, regardless of the orientation of the ¢ vector which is defined

as
q=/%+q;

Note: Be careful! The SLDs and scale can be highly correlated. Hold as many of these parameters fixed as
possible.

Note: The outer most radius (= radius + thickness) is used as the effective radius for S(Q) when P(Q) * S(Q) is
applied.

For information about polarised and magnetic scattering, see the Polarisation/Magnetic Scattering documentation.
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Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
Research (Kline, 2006)°.
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Fig. 1.78: 1D plot corresponding to the default parameters of the model.

References

Authorship and Verification
e Author: NIST IGOR/DANSE Date: pre 2010
* Last Modified by: Paul Kienzle Date: September 12, 2016
« Last Reviewed by: Paul Kienzle Date: September 12, 2016

core_shell_sphere

Form factor for a monodisperse spherical particle with particle with a core-shell structure.

Parameter | Description Units Default value
scale Source intensity None 1

background | Source background cm’! 0.001

radius Sphere core radius A 60

thickness Sphere shell thickness A 10

sld_core core scattering length density 10°A2 | 1

sld_shell shell scattering length density 10°A2 | 2

sld_solvent | Solvent scattering length density | 10°A2 | 3

The returned value is scaled to units of cm™! sr'!, absolute scale.

This model provides the form factor, P(q), for a spherical particle with a core-shell structure. The form factor is
normalized by the particle volume.

For information about polarised and magnetic scattering, see the Polarisation/Magnetic Scattering documentation.

Definition

2 S R Kline, J Appl. Cryst., 39 (2006) 895
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The 1D scattering intensity is calculated in the following way (Guinier, 1955)

1
P(q) = SC‘E;eFQ(q) + background
where
3 sin(gr.) — qr. cos(qr.) sin(grs) — qrs cos(qrs)
qui ‘/('p('*ps +‘/sps*psolv
A e S ( T )y

where Vj is the volume of the whole particle, V. is the volume of the core, r; = radius + thickness is the radius
of the particle, r.. is the radius of the core, p, is the scattering length density of the core, p; is the scattering length
density of the shell, pgy, is the scattering length density of the solvent.

The 2D scattering intensity is the same as P(q) above, regardless of the orientation of the ¢ vector.

NB: The outer most radius (ie, = radius + thickness) is used as the effective radius for S(Q) when P(Q) - S(Q) is
applied.

1Q) (em™)

Fig. 1.79: 1D plot corresponding to the default parameters of the model.

References

A Guinier and G Fournet, Small-Angle Scattering of X-Rays, John Wiley and Sons, New York, (1955)

Validation

Validation of our code was done by comparing the output of the 1D model to the output of the software provided

by NIST (Kline, 2006). Figure 1 shows a comparison of the output of our model and the output of the NIST
software.

fuzzy_sphere

Scattering from spherical particles with a fuzzy surface.
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Parame- Description Units Default

ter value

scale Source intensity None 1

back- Source background cm’! 0.001

ground

sld Particle scattering length density 10°A2 | 1

sld_solvent | Solvent scattering length density 10°A2 [ 3

radius Sphere radius A 60

fuzziness std deviation of Gaussian convolution for interface (must be << ra- | A 10
dius)

The returned value is scaled to units of cm™! sr'!, absolute scale.
For information about polarised and magnetic scattering, see the Polarisation/Magnetic Scattering documentation.
Definition

The scattering intensity I(q) is calculated as:

1
I(q) = ?(AP)ZAQ (¢)S(q) + background
where the amplitude A(q) is given as the typical sphere scattering convoluted with a Gaussian to get a gradual

drop-off in the scattering length density:

3 [sin(qR) — qR cos(qR)] —(Otuzayq)?
(aR)? P ( 2 )

Here A(q)? is the form factor, P(q). The scale is equivalent to the volume fraction of spheres, each of volume, V.
Contrast (Ap) is the difference of scattering length densities of the sphere and the surrounding solvent.

Alq) =

Poly-dispersion in radius and in fuzziness is provided for, though the fuzziness must be kept much smaller than
the sphere radius for meaningful results.

From the reference:

The “fuzziness” of the interface is defined by the parameter o,,y. The particle radius R represents the
radius of the particle where the scattering length density profile decreased to 1/2 of the core density.
Ofuzzy 1s the width of the smeared particle surface; i.e., the standard deviation from the average height
of the fuzzy interface. The inner regions of the microgel that display a higher density are described by
the radial box profile extending to a radius of approximately Rpox ~ R — 20. The profile approaches
zero as Ry, ~ R+ 20.

For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the ¢ vector is defined as
1=1/@"+q°

References

M Stieger, J. S Pedersen, P Lindner, W Richtering, Langmuir, 20 (2004) 7283-7292

linear_pearls

Linear pearls model of scattering from spherical pearls.
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Fig. 1.80: 1D plot corresponding to the default parameters of the model.
Parameter | Description Units Default value
scale Source intensity None 1
background | Source background cm’! 0.001
radius Radius of the pearls A 80
edge_sep Length of the string segment - surface to surface | A 350
num_pearls | Number of the pearls None 3
sld SLD of the pearl spheres 10°A2 [ 1
sld_solvent | SLD of the solvent 10°A2 | 6.3

The returned value is scaled to units of cm™! sr'!, absolute scale.

This model provides the form factor for NV spherical pearls of radius R linearly joined by short strings (or segment
length or edge separation) [ (= A — 2R). A is the center-to-center pearl separation distance. The thickness of
each string is assumed to be negligible.

R

Definition

The output of the scattering intensity function for the linear_pearls model is given by (Dobrynin, 1996)

N—-1 . .
m? <N +2) (N —n) Sm(s””) (351D<QR) — qRcos(qR) ) ’

qnl (qr)3

where the mass my, is (SLDpeari — SLDsovent) * (volume of N pearls). V is the total volume.

scale
\%

P@Q) =
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The 2D scattering intensity is the same as P(q) above, regardless of the orientation of the q vector.

1Q) (em™)

Fig. 1.81: 1D plot corresponding to the default parameters of the model.

References

A V Dobrynin, M Rubinstein and S P Obukhov, Macromol., 29 (1996) 2974-2979

multilayer_vesicle

P(Q) for a Multi-lamellar vesicle

Parameter Description Units Default value
scale Source intensity None 1

background Source background cm’! 0.001
volfraction volume fraction of vesicles None 0.05

radius radius of solvent filled core A 60

thick_shell thickness of one shell A 10
thick_solvent | solvent thickness between shells A 10
sld_solvent solvent scattering length density 10°A2 | 6.4

sld Shell scattering length density 10°A2 | 0.4

n_shells Number of shell plus solvent layer pairs | None 2

The returned value is scaled to units of cm™! sr'!, absolute scale.
Definition

This model is a trivial extension of the core_shell_sphere function where the core is filled with solvent and is
surrounded by NN shells of material (such as lipids) interleaved with N — 1 layers of solvent. For N = 1, this
returns the same as the vesicle model, except for the normalisation, which here is to outermost volume. The shell
thicknesses and SLD are constant for all shells as expected for a multilayer vesicle.

See the core_shell_sphere model for more documentation.

The 1D scattering intensity is calculated in the following way (Guinier, 1955)

P(q) = scale - F?(q) + background

o]
V(RnN)
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where

for

Multi-Shell Spherical Model

(e.g. multilamellar vesicles)

shell
* thickness

.

solvent layer
thickness

Fig. 1.82: Geometry of the multilayer_vesicle model.

N
F(Q) pshell — Psolv Z |:3V Tz

i=1

sin(¢R;) — qR; cos(¢R;)
(¢1%;)?

s1n (qri) — qri cos(qr;)
(qTi)g

—3V(R))

r; = 7e+ (i — 1)(ts + ty) solvent radius before shell
R; = r; + t, shell radius for shell ¢

¢ is the volume fraction of particles, V' (r) is the volume of a sphere of radius r, r. is the radius of the core, ¢ is
the thickness of the shell, ¢,, is the thickness of the solvent layer between the shells, pgep is the scattering length
density of a shell, and pyy is the scattering length density of the solvent.

USAGE NOTES

The outer-most shell radius Ry is used as the effective radius for P(Q) when P(Q) * S(Q) is applied.
calculations rather slow.

The number of shells is always rounded to an integer value as a non interger number of layers is not physical.

Thus Polydispersity should only be applied to number of shells VERY CAREFULLY. A possible legiti-
mate use would be for mixed systems in which some vesicles have 1 shell, some have 2, etc. A polydisper-
sity on IV can be used to model the data by using the “array distriubtion” feature. First create a file such as
shell_dist.txt containing the relative portion of each vesicle size:

1 20
2 4
3 1

Turn on polydispersity and select an array distribution for the n_shells parameter. Choose the above
shell_dist.txt file, and the model will be computed with 80% 1-shell vesicles, 16% 2-shell vesicles and
4% 3-shell vesicles.
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This is a highly non-linear, highly oscillatory (especially around the g-values that correspond to the repeat
distance of the layers), model function complicated by the fact that the number of water/shell pairs must
physically be an integer value, although the optimization treats it as a floating point value. Thus it may
be that the resolution interpolation is not sufficiently fine grained in certain cases. Please report any such
occurences to the SasView team. Generally, for the best possible experience:

Start with the best possible guess

Using a priori knowledge, hold as many parameters fixed as possible

if N=1, tw (water thickness) must by definition be zero. Both N and tw should be fixed during fitting.
If N>1, use constraints to keep N > 1

Because N only really moves in integer steps, it may get “stuck” if the optimizer step size is too small so
care should be taken If you experience problems with this please contact the SasView team and let them
know the issue preferably with example data and model which fail to converge.

The 2D scattering intensity is the same as 1D, regardless of the orientation of the q vector which is defined as:

q=1/% + 4

For information about polarised and magnetic scattering, see the Polarisation/Magnetic Scattering documentation.
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Fig. 1.83: 1D plot corresponding to the default parameters of the model.

References

Autho

rship and Verification

* Author: NIST IGOR/DANSE Date: pre 2010

* Converted to sasmodels by: Piotr Rozyczko Date: Feb 24, 2016

¢ Last Modified by: Paul Kienzle Date: Feb 7, 2017

¢ Last Reviewed by: Paul Butler Date: March 12, 2017

onion

Onion

shell model with constant, linear or exponential density
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Parameter Description Units Default value
scale Source intensity None 1
background Source background cm’! 0.001
sld_core Core scattering length density 10°A2 | 1
radius_core Radius of the core A 200
sld_solvent Solvent scattering length density 10°A2 | 6.4
n_shells number of shells None 1
sld_in[n_shells] scattering length density at the inner radius of shell k | 10°A | 1.7
sld_out[n_shells] scattering length density at the outer radius of shell k | 10°A2 | 2
thickness[n_shells] | Thickness of shell k A 40
Al[n_shells] Decay rate of shell k None 1

The returned value is scaled to units of cm™! sr'!, absolute scale.

This model provides the form factor, P(q), for a multi-shell sphere where the scattering length density (SLD)
of each shell is described by an exponential, linear, or constant function. The form factor is normalized by the
volume of the sphere where the SLD is not identical to the SLD of the solvent. We currently provide up to 9 shells
with this model.

NB: radius represents the core radius r( and thickness[k] represents the thickness of the shell, ry4+1 — 7%.
Definition

The 1D scattering intensity is calculated in the following way
P(q) = [f]2/%mticle

where

N
f = fcore + ( Z fshell) + fsolvent

shell=1

The shells are spherically symmetric with particle density p(r) and constant SLD within the core and solvent, so

Tcore Sin q,r .71 qr
Jeore = 47T/ Pcore ( ) r2dr = SPCOrBV(rcore)M
0 4T core
Tshell sin(qr
fshell = 47T/ pshell(r) ( ) r2 dr
Tshell— 1
o sin(qr ar
fSOlVent =dr / Psolventﬁ 7"2 dr = _SpsolventV(TN) M
N a qrn

where the spherical bessel function j; is

and the volume is V(r) = 4?”7"3. The volume of the particle is determined by the radius of the outer shell, so
V;)article - V(TN)
Now lets consider the SLD of a shell defined by

) Bexp (A(r — reeii—1)/Atshen) + C for A #0
pshell(r) -
Pin = constant forA=0

An example of a possible SLD profile is shown below where p;, and Aty stand for the SLD of the inner side of
the k™ shell and the thickness of the k™ shell in the equation above, respectively.

For A > 0,
Tshell sin(gr
fshel = 47T/ [Bexp (A(r — Tsheli—1) / Atshen) + C] q(;] ) r?dr
= 3BV (rshe) € (outs Bowt) — 3BV (Psheti—1)(in, Bin) + SCV(Tshell)hgﬂ - 3CV(7’shen—1)jlgm
out n
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for
— L oA
- Pout Pin C o Pin€ Pout
ed —1 ed —1
Tshell—1 Tshell
ain:AA aout:AA
tshell tshell
Bin = qTshel—1 Bout = qTshell
where h is

(2 — y?)sin(y) — 2zy cos(y)
(2 +y?)?%y

Bz, y) = zsin(y) —ycos(y)

(22 4+ y2)y

For A ~ 0, e.g., A = —0.0001, this function converges to that of the linear SLD profile with pgen(r) ~ A(r —

Tshell—1)/ Atsnen) + B, so this case is equivalent to

fshell =3V (Tshe]] )

Alghent (qTou)*

Apshell |:2 Cos(qrout) + 4T out Sin(qrout):|

— 3V (Tshen) Aloa

)jl (qTout)

out

(qrin)4

+ 3poutV (Tshelt — 3pinV (Tsheti—1)

Apshelt [2 c0s(qrin) + qTin sin(qrin)}

J1(qrin)

in

For A = 0, the exponential function has no dependence on the radius (so that poy is ignored in this case) and

becomes flat. We set the constant to p;, for convenience, and thus the form factor contributed by the shells is

jl (qrin)

)jl (qrout)

qTout

Jshett = 3pinV (Tshen — 3pinV (T'sheli—1)

qTin

The 2D scattering intensity is the same as P(q) above, regardless of the orientation of the ¢ vector which is defined

as

q=1/4+q;

NB: The outer most radius is used as the effective radius for S(q) when P(q)S(q) is applied.

References

L A Feigin and D I Svergun, Structure Analysis by Small-Angle X-Ray and Neutron Scattering, Plenum Press,
New York, 1987.

polymer_micelle

Polymer micelle model

Parameter Description Units Default value
scale Source intensity None 1
background Source background cm’! 0.001
ndensity Number density of micelles 10Pcm?® | 8.94
v_core Core volume A3 62624
v_corona Corona volume A3 61940
sld_solvent Solvent scattering length density 10°A2 | 6.4
sld_core Core scattering length density 10°A2 | 0.34
sld_corona Corona scattering length density 10°A2 [ 08
radius_core Radius of core ( must be >>rg) A 45

g Radius of gyration of chains in corona A 20
d_penetration | Factor to mimic non-penetration of Gaussian chains | None 1
n_aggreg Aggregation number of the micelle None 6

1.1. Model Functions
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An Example of a SLD Profile w/ # of Shell = 4

A>0
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A<D
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A=0
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Fig. 1.84: Example of an onion model profile.
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Fig. 1.85: 1D plot corresponding to the default parameters of the model.
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The returned value is scaled to units of cm™! sr'!, absolute scale.

This model provides the form factor, P(q), for a micelle with a spherical core and Gaussian polymer chains
attached to the surface, thus may be applied to block copolymer micelles. To work well the Gaussian chains must
be much smaller than the core, which is often not the case. Please study the reference carefully.

Definition

The 1D scattering intensity for this model is calculated according to the equations given by Pedersen (Pedersen,
2000), summarised briefly here.

The micelle core is imagined as N = n_aggreg polymer heads, each of volume V., which then defines a micelle
core of radius r = r_core, which is a separate parameter even though it could be directly determined. The Gaussian
random coil tails, of gyration radius Ry, are imagined uniformly distributed around the spherical core, centred at
a distance r + d - R, from the micelle centre, where d = d_penetration is of order unity. A volume Vorona is
defined for each coil. The model in detail seems to separately parametrise the terms for the shape of I(Q) and the
relative intensity of each term, so use with caution and check parameters for consistency. The spherical core is
monodisperse, so it’s intensity and the cross terms may have sharp oscillations (use ¢ resolution smearing if needs
be to help remove them).

P(q) = N26§CI)(QT)2 + N/BCQPL(Q) + 2N2Bsﬁcssc(Q) + N(N - 1)/8250(1((1)

Bs = chore(pcore - psolvent)
5c = ‘/corona(pcorona - psolvent)

where Pcores Peorona aNd Psolvent are the scattering length densities sld_core, sld_corona and sld_solvent. For the
spherical core of radius r

sin(gr) — qr cos(qr)

olar) = (qr)?

whilst for the Gaussian coils
P.(q) = 2[exp(—2) + Z - 1]/2?
Z = (qRy)?
The sphere to coil (core to corona) and coil to coil (corona to corona) cross terms are approximated by:

sin(g(r+d- Ry))

Sse(q) = @(qr)y(2)

q(r+d- Ry)
B , [sin(q(r +d- Ry))1?
Scc(q) - ¢(Z) q(7'+d Rg)
—exp~?
w(z)= 1220

Validation

P(q) above is multiplied by ndensity, and a units conversion of 10713, so scale is likely 1.0 if the scattering data
is in absolute units. This model has not yet been independently validated.

References
J Pedersen, J. Appl. Cryst., 33 (2000) 637-640
* Modified by: Richard Heenan Date: March 20, 2016
* Verified by: Paul Kienzle Date: November 29, 2017
¢ Description modified by: Paul Kienzle Date: November 29, 2017
* Description reviewed by: Steve King Date: November 30, 2017
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Fig. 1.86: 1D plot corresponding to the default parameters of the model.

raspberry

Calculates the form factor, P(q), for a ‘Raspberry-like’ structure where there are smaller spheres at the surface of
a larger sphere, such as the structure of a Pickering emulsion.

Parameter Description Units Default value
scale Source intensity None 1
background Source background cm’! 0.001
sld_lg large particle scattering length density 10°A2 | -0.4
sld_sm small particle scattering length density 10°A2 | 35
sld_solvent solvent scattering length density 10°A2 | 6.36
volfraction_lg volume fraction of large spheres None 0.05
volfraction_sm volume fraction of small spheres None 0.005
surface_fraction | fraction of small spheres at surface None 0.4
radius_Ig radius of large spheres A 5000
radius_sm radius of small spheres A 100
penetration fractional penetration depth of small spheres into large sphere | A 0

The returned value is scaled to units of cm™! sr'!, absolute scale.
Definition

The figure below shows a schematic of a large droplet surrounded by several smaller particles forming a structure
similar to that of Pickering emulsions.

In order to calculate the form factor of the entire complex, the self-correlation of the large droplet, the self-
correlation of the particles, the correlation terms between different particles and the cross terms between large
droplet and small particles all need to be calculated.

Consider two infinitely thin shells of radii R; and R separated by distance . The general structure of the equation
is then the form factor of the two shells multiplied by the phase factor that accounts for the separation of their
centers.

sin(qR1) sin(¢Rz) sin(qr)

S =
@ qR qRo qr
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Fig. 1.87: Schematic of the raspberry model

In this case, the large droplet and small particles are solid spheres rather than thin shells. Thus the two terms must
be integrated over R, and Rg respectively using the weighting function of a sphere. We then obtain the functions
for the form of the two spheres:

3[sin(qRr) — qRy cos(qRL)]
(¢RL)?

sin(¢Ry)

Ry,
Uy = / (47 R2) dRp, =
0

Rs sin(gRg) 3[sin(qRs) — qRL cos(qRs)]
Ve — A7 R2 sin(qRs dRe — S L S
s /0 (rEs) qRs 5 (qRs)?

The cross term between the large droplet and small particles is given by:

Sin(q(RL + 5R5))

Sps =YV
Ls L¥s o(RL + 6 Rs)

and the self term between small particles is given by:

sin(¢(Ry, + 6Rs))1*
q(R, + 0 Rg)

SSS = \I/%'

The number of small particles per large droplet, N, is given by:

N, — ¢S (ybsurface VL
P éLVs

where ¢g is the volume fraction of small particles in the sample, @gyface 1S the fraction of the small particles that
are adsorbed to the large droplets, ¢, is the volume fraction of large droplets in the sample, and Vg and V}, are
the volumes of individual small particles and large droplets respectively.

The form factor of the entire complex can now be calculated including the excess scattering length densities of the
components Apy, and Apg, where Ap, = |pz — Psolvent|

1
Prs = 2 [(ApL)*VEWT + Np(Aps)*VEW% + Ny(1 — Np)(Aps)*VESss + 2N AprApsViVsSLs]
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where M is the total scattering length of the whole complex :
M = ApLVi + NpApsVs

In a real system, there will ususally be an excess of small particles such that some fraction remain unbound.
Therefore the overall scattering intensity is given by:

I(Q) = Is(Q) + Is(Q) = (¢r.(ApL)* VL + d5bsurtace Np(Aps)*Vs) Prs + ¢5(1 — dsurtace) (Aps)> Ve T2

A useful parameter to extract is the fraction of the surface area of the large droplets that is covered by small
particles. This can be calculated from the model parameters as:

X = 4¢L¢surface(RL + 5RS)

orRs

1Q) (em™)

Fig. 1.88: 1D plot corresponding to the default parameters of the model.

References

K Larson-Smith, A Jackson, and D C Pozzo, Small angle scattering model for Pickering emulsions and raspberry
particles, Journal of Colloid and Interface Science, 343(1) (2010) 36-41

¢ Author: Andrew Jackson Date: 2008
* Modified by: Andrew Jackson Date: March 20, 2016
¢ Reviewed by: Andrew Jackson Date: March 20, 2016

sphere

Spheres with uniform scattering length density

Parameter | Description Units Default value
scale Source intensity None 1

background | Source background cm’! 0.001

sld Layer scattering length density 10°A2 [ 1

sld_solvent | Solvent scattering length density 10°42 | 6

radius Sphere radius A 50
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The returned value is scaled to units of cm™! sr'!, absolute scale.

For information about polarised and magnetic scattering, see the Polarisation/Magnetic Scattering documentation.

Definition

The 1D scattering intensity is calculated in the following way (Guinier, 1955)

I(g) = sc‘z;le Naviag)- sin(qr) (qz;’;OS(qr))

where scale is a volume fraction, V' is the volume of the scatterer, r is the radius of the sphere and background is
the background level. sld and sld_solvent are the scattering length densities (SLDs) of the scatterer and the solvent
respectively, whose difference is Ap.

2
+ background

Note that if your data is in absolute scale, the scale should represent the volume fraction (which is unitless) if you

have a good fit. If not, it should represent the volume fraction times a factor (by which your data might need to be
rescaled).

The 2D scattering intensity is the same as above, regardless of the orientation of §.
Validation

Validation of our code was done by comparing the output of the 1D model to the output of the software provided
by the NIST (Kline, 2006).

10—
10%F
107}

10"}

I(Q) (em™)
o

Fig. 1.89: 1D plot corresponding to the default parameters of the model.
References
A Guinier and G. Fournet, Small-Angle Scattering of X-Rays, John Wiley and Sons, New York, (1955)
* Last Reviewed by: S King and P Parker Date: 2013/09/09 and 2014/01/06

spherical_sid

Sperical SLD intensity calculation
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Parameter Description Units Default value
scale Source intensity None 1
background Source background cm’! 0.001
n_shells number of shells None 1
sld_solvent solvent sld 10°A2 | 1
sld[n_shells] sld of the shell 10°A2 | 4.06
thickness[n_shells] | thickness shell A 100
interface[n_shells] | thickness of the interface A 50
shape[n_shells] interface shape None 0
nu[n_shells] interface shape exponent None 2.5
n_steps number of steps in each interface (must be an odd integer) | None 35

The returned value is scaled to units of cm™ sr'!, absolute scale.
Definition

Similarly to the onion, this model provides the form factor, P(q), for a multi-shell sphere, where the interface
between the each neighboring shells can be described by the error function, power-law, or exponential functions.
The scattering intensity is computed by building a continuous custom SLD profile along the radius of the particle.
The SLD profile is composed of a number of uniform shells with interfacial shells between them.

An Example of a SLD Profile w/ n_shells = 2

shapel determines the shape and
M nul determines the steepness

\ sld2

SLD

sld_solvent

sld1 ; ;
:‘ E -E ..... . i
'E E ; n_steps |
thickness1 ‘interfacel | thickness2 | interface2
core v interface shell : interface solvent
0 radius

Fig. 1.90: Example SLD profile

Unlike the <onion> model (using an analytical integration), the interfacial shells here are sub-divided and numeri-
cally integrated assuming each sub-shell is described by a line function, with n_steps sub-shells per interface. The
form factor is normalized by the total volume of the sphere.

Interface shapes are as follows:
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0: erf(vz)
1: Rpow(z")
2: Lpow(z")
3: Rexp(—vz)
4: Lexp(—vz)
The form factor P(g) in 1D is calculated by:
f2 N N
P(q) = 57— where f = feore + > fimer, T D, fra, + fiohen
particle

inter; =0 flat; =0
For a spherically symmetric particle with a particle density p, () the sld function can be defined as:

fo= 47r/ px(r)sm(gr) r2dr
0 qr

so that individual terms can be calculated as follows:

mee sin(gr) SIN(gTeore) = e COS(qere)
— 47 ’I“Qd’l“ -3 Vir { core core core :|
fcore /0v Peore qar Peore ( COTe) qrgore
fimeri = 47T/ Pinter;
Atimeri

sin(gr
fshelli = 47T/ Pflat; q(r)Ter = 3pﬂat1- V(rinleri + Atinteri) |:
Atinteri

sin(qr) 7’2d7’

Sin(qrinteri + Atinteri) - Q(rimeri + Atinterl) COS(Q(rinteri + Ating
q(rinteri + Atimeri)g

- sin(gr sin(qry) — qry cos(qry
sotvent = 47T/ Psolvent ( )’I"Zd?" = 3psotventV (7N) [ ( ) 3 ( )
TN q?" q/rN

Here we assumed that the SLDs of the core and solvent are constant in 7. The SLD at the interface between shells,
Pinter; 15 calculated with a function chosen by an user, where the functions are

Exp:
Bexp (%_:M)) +C forA#0
Pinter, (T) = e
B (T) +C for A =0
Power-Law
iB((zﬂ)A—&-C for A#0
Pinter; (T) = tinter;
Phlat; 1 for A=0
Erf:
A("’*Tﬂa(i)
) BerfﬁT +C forA+#0
Pinter;\T") = R inter;
B(%) +C for A=0

The functions are normalized so that they vary between 0 and 1, and they are constrained such that the SLD is
continuous at the boundaries of the interface as well as each sub-shell. Thus B and C are determined.

Once pineer; 1s found at the boundary of the sub-shell of the interface, we can find its contribution to the form factor
P(q)

Mste

sin(gr
finteri = 47T/ Pinter; ﬁ’rzd’r =47 z
A qr

timcri J:

Tsteps ’["2/82 Sin(ﬁ _ (62 _ 2) Cos B .
~ 4m Z [3(pimeri (Tj-‘rl) — Pinter; (Tj)V(Tj) { J Fout out) 54 out ( out)
=t out

2 i in) — ]?1_2 3{Pin) ]
8 (1342) — i, 1)V (1) [ L) = = 2 onlE)

sin(ﬁout)ﬁ—4 tCOS(Bout):| e, 1)V (1) {sin(ﬂm) —4 cos(Bin) 17

in

+ 3pinteri (Tj+1)V(Tj) |:
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where
47
V(a) = —a®
3
r r
J Jj+1
Qin ~ ———— Qout ™~ ——
Tj+1 =T Tj+1 =T
Bin = qr5, Bout = qTj+1

We assume pineer, () is approximately linear within the sub-shell j.
Finally the form factor can be calculated by

s

P =
(Q) ‘/parlicle

where V;Janicle = V(Tshell N)

For 2D data the scattering intensity is calculated in the same way as 1D, where the ¢ vector is defined as
q=/%+q;

Note: The outer most radius is used as the effective radius for S(Q) when P(Q) * S(Q) is applied.

104

profile
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Fig. 1.91: 1D plot corresponding to the default parameters of the model.

References
Authorship and Verification
¢ Author: Jae-Hie Cho Date: Nov 1, 2010
¢ Last Modified by: Paul Kienzle Date: Dec 20, 2016
* Last Reviewed by: Paul Butler Date: September 8, 2018

vesicle

Vesicle model representing a hollow sphere
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Parameter | Description Units Default value
scale Source intensity None 1

background | Source background cm’! 0.001

sld vesicle shell scattering length density | 10°A2 | 0.5
sld_solvent | solvent scattering length density 10°A2 | 6.36
volfraction | volume fraction of shell None 0.05

radius vesicle core radius A 100

thickness vesicle shell thickness A 30

The returned value is scaled to units of cm™! sr'!, absolute scale.
Definition

This model provides the form factor, P(q), for an unilamellar vesicle and is effectively identical to the hollow
sphere reparameterized to be more intuitive for a vesicle and normalizing the form factor by the volume of the
shell. The 1D scattering intensity is calculated in the following way (Guinier,1955")

¢ 3Vcore(psolvent - pshell)jl (chore) + 3Vtot(pshell - Psolvent)jl (thot)

2
+ background
V;hall chore thot g

P(q) =

where ¢ is the volume fraction of shell material, Vij,¢;; is the volume of the shell, V., is the volume of the core,
Viot 1s the total volume, R is the radius of the core, Ry is the outer radius of the shell, psoven 1S the scattering
length density of the solvent (which is the same as for the core in this case), pscae 1S the scattering length density of
the shell, background is a flat background level (due for example to incoherent scattering in the case of neutrons),
and j; is the spherical bessel function j; = (sin(z) — x cos(x))/z2.

The functional form is identical to a “typical” core-shell structure, except that the scattering is normalized by the
volume that is contributing to the scattering, namely the volume of the shell alone, the scattering length density of
the core is fixed the same as that of the solvent, the scale factor when the data are on an absolute scale is equivalent
to the volume fraction of material in the shell rather than the entire core+shell sphere, and the parameterization is
done in terms of the core radius = R,y and the shell thickness = Ry — Reore.

Fig. 1.92: Vesicle geometry.
The 2D scattering intensity is the same as P(q) above, regardless of the orientation of the g vector which is defined

as
q=\/2+4a;

NB: The outer most radius (= radius + thickness) is used as the effective radius for S(Q) when P(Q) * S(Q) is
applied.

I A Guinier and G. Fournet, Small-Angle Scattering of X-Rays, John Wiley and Sons, New York, (1955)
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Fig. 1.93: 1D plot corresponding to the default parameters of the model.

References
Authorship and Verification
e Author: NIST IGOR/DANSE Date: pre 2010
¢ Last Modified by: Paul Butler Date: March 20, 2016
* Last Reviewed by: Paul Butler Date: September 7, 2018

1.1.7 Shape-Independent Functions
be_polyelectrolyte

Polyelectrolyte with the RPA expression derived by Borue and Erukhimovich

Parameter Description Units | Default value
scale Source intensity None | 1

background Source background cm’! 0.001
contrast_factor Contrast factor of the polymer barns | 10
bjerrum_length Bjerrum length A 7.1
virial_param Virial parameter A3 12
monomer_length Monomer length A 10
salt_concentration Concentration of monovalent salt | mol/L | O
ionization_degree Degree of ionization None | 0.05
polymer_concentration | Polymer molar concentration mol/L | 0.7

The returned value is scaled to units of cm™! sr'!, absolute scale.

Note: Please read the Validation section below.

Definition This model calculates the structure factor of a polyelectrolyte solution with the RPA expression derived
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by Borue and Erukhimovich'. Note however that the fitting procedure here does not follow the notation in that
reference as ‘s’ and ‘t’” are not decoupled. Instead the scattering intensity I(q) is calculated as

I(q) = q* + k? 1
V= Ly T+ 18( + k2)(q% — 12hC, /0?)
k* = 4nLy(2C, + aC,)

+ background

b
2
" .18 L,

where

K is the contrast factor for the polymer which is defined differently than in other models and is given in barns
where 1 barn = 10724 cm?. K is defined as:

K =a?
a = by — (vp/vs)bs
where:

* b, and b, are sum of the scattering lengths of the atoms constituting the polymer monomer and the solvent
molecules, respectively.

* v, and v, are the partial molar volume of the polymer and the solvent, respectively.

* L, is the Bjerrum length (A) - Note: This parameter needs to be kept constant for a given solvent and
temperature!

* h is the virial parameter (A%) - Note: See' for the correct interpretation of this parameter. It incorporates
second and third virial coefficients and can be negative.

* b is the monomer length A).

« (., is the concentration of monovalent salt(1/A3 - internally converted from mol/L).

* « is the degree of ionization (the ratio of charged monomers to the total number of monomers)
* (, is the polymer molar concentration (1/A3 - internally converted from mol/L)

* background is the incoherent background.

For 2D data the scattering intensity is calculated in the same way as 1D, where the ¢ vector is defined as

q=1/4% + 4

As of the last revision, this code is believed to be correct. However it needs further validation and should be
used with caution at this time. The history of this code goes back to a 1998 implementation. It was recently
noted that in that implementation, while both the polymer concentration and salt concentration were converted
from experimental units of mol/L to more dimensionally useful units of 1/A3, only the converted version of the
polymer concentration was actually being used in the calculation while the unconverted salt concentration (still in
apparent units of mol/L) was being used. This was carried through to Sasmodels as used for SasView 4.1 (though
the line of code converting the salt concentration to the new units was removed somewhere along the line). Simple
dimensional analysis of the calculation shows that the converted salt concentration should be used, which the
original code suggests was the intention, so this has now been corrected (for SasView 4.2). Once better validation
has been performed this note will be removed.

Validation

References

Authorship and Verification
* Author: NIST IGOR/DANSE Date: pre 2010
* Last Modified by: Paul Butler Date: September 25, 2018
* Last Reviewed by: Paul Butler Date: September 25, 2018

'V Y Borue, I Y Erukhimovich, Macromolecules, 21 (1988) 3240
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Fig. 1.94: 1D plot corresponding to the default parameters of the model.
broad_peak

Broad Lorentzian type peak on top of a power law decay

Parameter Description Units | Default value
scale Source intensity None | 1

background Source background cm’! 0.001
porod_scale Power law scale factor None | 1e-05
porod_exp Exponent of power law None | 3
lorentz_scale Scale factor for broad Lorentzian peak | None | 10
lorentz_length | Lorentzian screening length A 50

peak_pos Peak position in q AT 0.1
lorentz_exp Exponent of Lorentz function None | 2

The returned value is scaled to units of cm™! sr'!, absolute scale.
Definition

This model calculates an empirical functional form for SAS data characterized by a broad scattering peak. Many
SAS spectra are characterized by a broad peak even though they are from amorphous soft materials. For example,
soft systems that show a SAS peak include copolymers, polyelectrolytes, multiphase systems, layered structures,
etc.

The d-spacing corresponding to the broad peak is a characteristic distance between the scattering inhomogeneities
(such as in lamellar, cylindrical, or spherical morphologies, or for bicontinuous structures).

The scattering intensity I(q) is calculated as

A C
I(q)= S5+ e + B
@ = T le—qom

Here the peak position is related to the d-spacing as gg = 27/dp.

A is the Porod law scale factor, n the Porod exponent, C is the Lorentzian scale factor, m the exponent of ¢, £ the
screening length, and B the flat background.
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For 2D data the scattering intensity is calculated in the same way as 1D, where the g vector is defined as

q=/4+q;

1Q) (em™)

Fig. 1.95: 1D plot corresponding to the default parameters of the model.

References
None.
Authorship and Verification
e Author: NIST IGOR/DANSE Date: pre 2010
* Last Modified by: Paul kienle Date: July 24, 2016
¢ Last Reviewed by: Richard Heenan Date: March 21, 2016

correlation_length

Calculates an empirical functional form for SAS data characterized by a low-Q signal and a high-Q signal.

Parameter Description Units | Default value
scale Source intensity None | 1

background Source background cm’! 0.001
lorentz_scale | Lorentzian Scaling Factor None | 10
porod_scale | Porod Scaling Factor None | 1e-06
cor_length Correlation length, xi, in Lorentzian A 50

porod_exp Porod Exponent, n, in g*-n None | 3

lorentz_exp Lorentzian Exponent, m, in 1/( 1 + (q.xi)"m) A2 2

The returned value is scaled to units of cm™! sr'!, absolute scale.

Definition
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The scattering intensity 1(q) is calculated as

1(Q) =

For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the q vector is defined as

A C

q=\/a tq;

+ ————— -+ background
QT+ (@ T

The first term describes Porod scattering from clusters (exponent = n) and the second term is a Lorentzian function
describing scattering from polymer chains (exponent = m). This second term characterizes the polymer/solvent
interactions and therefore the thermodynamics. The two multiplicative factors A and C, and the two exponents
n and m are used as fitting parameters. (Respectively porod_scale, lorentz_scale, porod_exp and lorentz_exp in
the parameter list.) The remaining parameter £ (cor_length in the parameter list) is a correlation length for the
polymer chains. Note that when m = 2 this functional form becomes the familiar Lorentzian function. Some
interpretation of the values of A and C' may be possible depending on the values of m and n.

1Q) (em™)

Fig. 1.96: 1D plot corresponding to the default parameters of the model.

References

B Hammouda, D L Ho and S R Kline, Insight into Clustering in Poly(ethylene oxide) Solutions, Macromolecules,

37 (2004) 6932-6937

dab

DAB (Debye Anderson Brumberger) Model

Parameter | Description Units | Default value
scale Source intensity None | 1

background | Source background | cm™ | 0.001
cor_length | correlation length A 50

The returned value is scaled to units of cm™! sr'!, absolute scale.
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Calculates the scattering from a randomly distributed, two-phase system based on the Debye-Anderson-
Brumberger (DAB) model for such systems. The two-phase system is characterized by a single length scale,
the correlation length, which is a measure of the average spacing between regions of phase 1 and phase 2. The
model also assumes smooth interfaces between the phases and hence exhibits Porod behavior (I ~ ¢~%) at
large ¢, (¢L > 1).

The DAB model is ostensibly a development of the earlier Debye-Bueche model.
Definition

3

I(q) = scale - 5 + background

(1+(q-L)?)
where scale is
scale = 8w (1 — @) Ap?

and the parameter L is the correlation length.

For 2D data the scattering intensity is calculated in the same way as 1D, where the ¢ vector is defined as

q=1/¢+q;

1Q) (em™)

Fig. 1.97: 1D plot corresponding to the default parameters of the model.

References

P Debye, H R Anderson, H Brumberger, Scattering by an Inhomogeneous Solid. II. The Correlation Function and
its Application, J. Appl. Phys., 28(6) (1957) 679

P Debye, A M Bueche, Scattering by an Inhomogeneous Solid, J. Appl. Phys., 20 (1949) 518
2013/09/09 - Description reviewed by King, S and Parker, P.

fractal

Calculates the scattering from fractal-like aggregates of spheres following theTexiera reference.
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Parameter | Description Units Default value
scale Source intensity None 1

background | Source background cm’! 0.001
volfraction | volume fraction of blocks None 0.05

radius radius of particles A 5

fractal_dim | fractal dimension None 2

cor_length cluster correlation length A 100

sld_block scattering length density of particles | 10°A2 | 2

sld_solvent | scattering length density of solvent 10°A2 | 6.4

The returned value is scaled to units of cm™! sr'!, absolute scale.

Definition This model calculates the scattering from fractal-like aggregates of spherical building blocks according
the following equation:

1(q) = ¢ Votock(Polock — psotvent) > P(q)S(g) + background

where ¢ is The volume fraction of the spherical “building block™ particles of radius Ry, Viock 1S the volume of
a single building block, pseivent 1S the scattering length density of the solvent, and pyock 1s the scattering length
density of the building blocks, and P(q), S(q) are the scattering from randomly distributed spherical particles (the
building blocks) and the interference from such building blocks organized in a fractal-like clusters. P(q) and S(q)
are calculated as:

P(q) = F(qRo)*
Flg) = 3(sinz — zcosx)

333
4
Vbarticle = g TRy

Dy Dy —1)  sin[(Dy — 1) tan""(¢¢)]

Slg) =1+ [+ 1/(¢)2 | Dr—D/2 (qRo)Ps

where ¢ is the correlation length representing the cluster size and Dy is the fractal dimension, representing the self
similarity of the structure. Note that S(q) here goes negative if Dy is too large, and the Gamma function diverges
at Dy =0and Dy = 1.

Polydispersity on the radius is provided for.

For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the g vector is defined as
q=1/¢+q;

References
Authorship and Verification
¢ Author: NIST IGOR/DANSE Date: pre 2010
¢ Converted to sasmodels by: Paul Butler Date: March 19, 2016
¢ Last Modified by: Paul Butler Date: March 12, 2017
¢ Last Reviewed by: Paul Butler Date: March 12, 2017

fractal_core_shell

Scattering from a fractal structure formed from core shell spheres
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Fig. 1.98: 1D plot corresponding to the default parameters of the model.
Parameter | Description Units Default value
scale Source intensity None 1
background | Source background cm’! 0.001
radius Sphere core radius A 60
thickness Sphere shell thickness A 10
sld_core Sphere core scattering length density 10°A2 [ 1
sld_shell Sphere shell scattering length density 10°A2 | 2
sld_solvent | Solvent scattering length density 10°A2 [ 3
volfraction | Volume fraction of building block spheres None 0.05
fractal_dim | Fractal dimension None 2
cor_length | Correlation length of fractal-like aggregates | A 100

The returned value is scaled to units of cm™! sr'!, absolute scale.

Definition Calculates the scattering from a fractal structure with a primary building block of core-shell spheres,
as opposed to just homogeneous spheres in the fractal model. It is an extension of the well known Teixeira'
fractal model replacing the P(q) of a solid sphere with that of a core-shell sphere. This model could find use for
aggregates of coated particles, or aggregates of vesicles for example.

I(q) = P(q)S(q) + background

Where P(q) is the core-shell form factor and S(q) is the Teixeira! fractal structure factor both of which are given
again below:

P(q) = % 3Ve(pe — ps) Sin(gre) (q;];C?,COS(qTC) + 3Vs(ps — psolw) sinfgrs) ((]ZGZCOS(L]TS)
Dy -1 sinl(Dy 1) tan(gg)]
SO =1 T oo 0 (@)

where ¢ is the volume fraction of particles, Vs is the volume of the whole particle, V, is the volume of the core, p,,
ps, and pg,p,, are the scattering length densities of the core, shell, and solvent respectively, r. and r, are the radius
of the core and the radius of the whole particle respectively, Dy is the fractal dimension, and £ the correlation
length.

I'J Teixeira, J. Appl. Cryst., 21 (1988) 781-785
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Polydispersity of radius and thickness are also provided for.

This model does not allow for anisotropy and thus the 2D scattering intensity is calculated in the same way as 1D,

where the ¢ vector is defined as
q=\/a+a;

Our model is derived from the form factor calculations implemented in IGOR macros by the NIST Center for
Neutron Research’

Fig. 1.99: 1D plot corresponding to the default parameters of the model.

References

Authorship and Verification
¢ Author: NIST IGOR/DANSE Date: pre 2010
¢ Last Modified by: Paul Butler and Paul Kienzle Date: November 27, 2016
» Last Reviewed by: Paul Butler and Paul Kienzle Date: November 27, 2016

gauss_lorentz_gel

Gauss Lorentz Gel model of scattering from a gel structure

Parameter Description Units | Default value
scale Source intensity None | 1

background Source background cm’! 0.001
gauss_scale Gauss scale factor None | 100
cor_length_static Static correlation length A 100
lorentz_scale Lorentzian scale factor None | 50
cor_length_dynamic | Dynamic correlation length | A 20

The returned value is scaled to units of cm™! sr'!, absolute scale.

2 S R Kline, J Appl. Cryst., 39 (2006) 895
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This model calculates the scattering from a gel structure, but typically a physical rather than chemical network.
It is modeled as a sum of a low-q exponential decay (which happens to give a functional form similar to Guinier
scattering, so interpret with care) plus a Lorentzian at higher-q values. See also the gel_fit model.

Definition

The scattering intensity I(q) is calculated as (Eqn. 5 from the reference)
I(q) = 1c(0) exp(—¢°Z?/2) + I (0)/(1 + ¢°€?)

= is the length scale of the static correlations in the gel, which can be attributed to the “frozen-in” crosslinks. &
is the dynamic correlation length, which can be attributed to the fluctuating polymer chains between crosslinks.
1:(0) and I1,(0) are the scaling factors for each of these structures. Think carefully about how these map to your
particular system!

Note: The peaked structure at higher ¢ values (Figure 2 from the reference) is not reproduced by the model.
Peaks can be introduced into the model by summing this model with the gaussian_peak model.

For 2D data the scattering intensity is calculated in the same way as 1D, where the ¢ vector is defined as

q=\/a t+q;
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Fig. 1.100: 1D plot corresponding to the default parameters of the model.
References

G Evmenenko, E Theunissen, K Mortensen, H Reynaers, Polymer, 42 (2001) 2907-2913

gaussian_peak

Gaussian shaped peak
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Parameter | Description Units | Default value
scale Source intensity None | 1

background | Source background cm’! 0.001
peak_pos Peak position Al 0.05

sigma Peak width (standard deviation) Al 0.005

The returned value is scaled to units of cm™! sr'!, absolute scale.
Definition

This model describes a Gaussian shaped peak on a flat background
I(q) = (scale) exp [—4(q — q0)?/o*] + background

with the peak having height of scale centered at gy and having a standard deviation of ¢. The FWHM (full-width
half-maximum) is 2.354¢.

For 2D data, scattering intensity is calculated in the same way as 1D, where the ¢ vector is defined as

q9=\/%+q;
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Fig. 1.101: 1D plot corresponding to the default parameters of the model.
References
None.
gel_fit

Fitting using fine-scale polymer distribution in a gel.
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Parameter Description Units | Default value
scale Source intensity None | 1

background Source background cm’! 0.001
guinier_scale | Guinier length scale cm”-1 | 1.7
lorentz_scale | Lorentzian length scale | cm”-1 | 3.5

rg Radius of gyration A 104
fractal_dim Fractal exponent None | 2

cor_length Correlation length A 16

The returned value is scaled to units of cm™! sr’!, absolute scale.
This model was implemented by an interested user!

Unlike a concentrated polymer solution, the fine-scale polymer distribution in a gel involves at least two charac-
teristic length scales, a shorter correlation length ( al ) to describe the rapid fluctuations in the position of the
polymer chains that ensure thermodynamic equilibrium, and a longer distance (denoted here as a2 ) needed to
account for the static accumulations of polymer pinned down by junction points or clusters of such points. The
latter is derived from a simple Guinier function. Compare also the gauss_lorentz_gel model.

Definition

The scattered intensity I(q) is calculated as

1
I(Q) = I(0 I(0)gexp (—Q%a3) + B
(Q) = I( )L(1 D" + I(0)gexp (—Q%a3) +

where
2
Rg

3

Note that the first term reduces to the Ornstein-Zernicke equation when D = 2; ie, when the Flory exponent is 0.5
(theta conditions). In gels with significant hydrogen bonding D has been reported to be ~2.6 to 2.8.
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Fig. 1.102: 1D plot corresponding to the default parameters of the model.
References

Mitsuhiro Shibayama, Toyoichi Tanaka, Charles C Han, J. Chem. Phys. 1992, 97 (9), 6829-6841

Simon Mallam, Ferenc Horkay, Anne-Marie Hecht, Adrian R Rennie, Erik Geissler, Macromolecules 1991, 24,
543-548
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guinier

Parameter | Description Units | Default value
scale Source intensity None | 1

background | Source background | cm’' 0.001

rg Radius of Gyration | A 60

The returned value is scaled to units of cm™ sr'!, absolute scale.
Definition
This model fits the Guinier function

—QQRg

I(q) = scale - exp + background

to the data directly without any need for linearisation (cf. the usual plot of In I(q) vs ¢*). Note that you may have
to restrict the data range to include small q only, where the Guinier approximation actually applies. See also the
guinier_porod model.

For 2D data the scattering intensity is calculated in the same way as 1D, where the ¢ vector is defined as

4=/ +4;

In scattering, the radius of gyration I?, quantifies the objects’s distribution of SLD (not mass density, as in me-
chanics) from the objects’s SLD centre of mass. It is defined by

2
g2 _ 2iPi(ri—To)
9 Zi Pi
where ry denotes the object’s SLD centre of mass and p; is the SLD at a point 7.

Notice that Rf] may be negative (since SLD can be negative), which happens when a form factor P(() is increasing
with @ rather than decreasing. This can occur for core/shell particles, hollow particles, or for composite particles
with domains of different SLDs in a solvent with an SLD close to the average match point. (Alternatively, this
might be regarded as there being an internal inter-domain “structure factor” within a single particle which gives
rise to a peak in the scattering).

To specify a negative value of Rg in SasView, simply give R, a negative value (Rf] will be evaluated as R,|Rg)).
Note that the physical radius of gyration, of the exterior of the particle, will still be large and positive. It is only
the apparent size from the small () data that will give a small or negative value of R_,QJ.

References
A Guinier and G Fournet, Small-Angle Scattering of X-Rays, John Wiley & Sons, New York (1955)
guinier_porod

Guinier-Porod function

Parameter | Description Units | Default value
scale Source intensity None | 1

background | Source background | cmT 0.001

g Radius of gyration A 60

S Dimension variable | None | 1

porod_exp | Porod exponent None

The returned value is scaled to units of cm™! sr’!, absolute scale.

Calculates the scattering for a generalized Guinier/power law object. This is an empirical model that can be
used to determine the size and dimensionality of scattering objects, including asymmetric objects such as rods or
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Fig. 1.103: 1D plot corresponding to the default parameters of the model.

platelets, and shapes intermediate between spheres and rods or between rods and platelets, and overcomes some
of the deficiencies of the (Beaucage) Unified_Power_Rg model (see Hammouda, 2010).

Definition

The following functional form is used

,QQRi
I(q):{gs eXp{ 5= } Q=
D/Q™ Q>

This is based on the generalized Guinier law for such elongated objects (see the Glatter reference below). For 3D
globular objects (such as spheres), s = 0 and one recovers the standard Guinier formula. For 2D symmetry (such
as for rods) s = 1, and for 1D symmetry (such as for lamellae or platelets) s = 2. A dimensionality parameter
(3 — s) is thus defined, and is 3 for spherical objects, 2 for rods, and 1 for plates.

Enforcing the continuity of the Guinier and Porod functions and their derivatives yields

1
Q1= EV(m— 5)(3—s)/2

and

_ 2R2
_ 1tYg m—s
DGexp[g_S] 1

- s e ] <<ms;(3s>>"’?*

Note that the radius of gyration for a sphere of radius R is given by R, = R+/3/5. For a cylinder of radius R and
length L, Rg = % + R; from which the cross-sectional radius of gyration for a randomly oriented thin cylinder

is Ry = R/ v/2 and the cross-sectional radius of gyration of a randomly oriented lamella of thickness T is given
by Ry =T/v12.

For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the q vector is defined as
q=/4+q;
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Fig. 1.104: 1D plot corresponding to the default parameters of the model.

Reference
B Hammouda, A new Guinier-Porod model, J. Appl. Cryst., (2010), 43, 716-719
B Hammouda, Analysis of the Beaucage model, J. Appl. Cryst., (2010), 43, 1474-1478

line

Line model
Parameter | Description Units Default value
scale Source intensity None 1
background | Source background cm’! 0.001
intercept intercept in linear model | cm’ 1
slope slope in linear model Acem™ |1

The returned value is scaled to units of cm™! sr'!, absolute scale.
This model calculates intensity using simple linear function
Definition

The scattering intensity I(q) is calculated as

1(q) = scale(A + B - q) + background

Note: For 2D plots intensity has different definition than other shape independent models

I(q) = scale(I(gx) - I(qy)) + background
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Fig. 1.105: 1D plot corresponding to the default parameters of the model.
References
None.
lorentz

Ornstein-Zernicke correlation length model

Parameter | Description Units | Default value
scale Source intensity None | 1

background | Source background | cm’! 0.001
cor_length | Screening length A 50

The returned value is scaled to units of cm™! sr'!, absolute scale.
Lorentz (Ornstein-Zernicke Model)
Definition

The Ornstein-Zernicke model is defined by

scale

I(q) = —————5 + back d
(q) 5 (qL)? + backgroun

The parameter L is the screening length cor_length.

For 2D data the scattering intensity is calculated in the same way as 1D, where the ¢ vector is defined as
=/ +q;

References

L.S. Qrnstein and F. Zernike, Proc. Acad. Sci. Amsterdam 17, 793 (1914), and Z. Phys. 19, 134 (1918), and 27,
761 {1926); referred to as QZ.
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Fig. 1.106: 1D plot corresponding to the default parameters of the model.

mass_fractal

Mass Fractal model

Parameter Description Units | Default value
scale Source intensity None | 1

background Source background cmT 0.001

radius Particle radius A 10
fractal_dim_mass | Mass fractal dimension | None | 1.9
cutoff_length Cut-off length A 100

The returned value is scaled to units of cm™! sr’!, absolute scale.
Calculates the scattering from fractal-like aggregates based on the Mildner reference.
Definition

The scattering intensity I(q) is calculated as
I(q) = scale x P(q)S(q) + background

P(q) = F(qR)?

3 [sin(z) — xcos(z))

F(z) = 23
_ (D, —1)¢Pn=1 sin [(Dm - l)tanfl(qg)]
[1+ (g)2) 0D ‘

scale = scale_factor x NVQ(ppam-c]e — psowem)Q
4 .
V=_7R?
37r

where R is the radius of the building block, D,, is the mass fractal dimension, ( is the cut-off length, psoivent 1S
the scattering length density of the solvent, and pparicle is the scattering length density of particles.
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Note: The mass fractal dimension ( D,,, ) is only valid if 1 < mass_dim < 6. It is also only valid over a limited
q range (see the reference for details).

1Q) (em™)
o

Fig. 1.107: 1D plot corresponding to the default parameters of the model.

References

D Mildner and P Hall, J. Phys. D: Appl. Phys., 19 (1986) 1535-1545 Equation(9)

mass_surface_fractal

Mass Surface Fractal model

Parameter Description Units | Default value
scale Source intensity None | 1

background Source background cm’! 0.001
fractal_dim_mass | Mass fractal dimension None | 1.8
fractal_dim_surf | Surface fractal dimension None | 2.3

rg_cluster Cluster radius of gyration A 4000
rg_primary Primary particle radius of gyration A 86.7

The returned value is scaled to units of cm™! sr'!, absolute scale.

A number of natural and commercial processes form high-surface area materials as a result of the vapour-phase
aggregation of primary particles. Examples of such materials include soots, aerosols, and fume or pyrogenic
silicas. These are all characterised by cluster mass distributions (sometimes also cluster size distributions) and
internal surfaces that are fractal in nature. The scattering from such materials displays two distinct breaks in log-
log representation, corresponding to the radius-of-gyration of the primary particles, rg, and the radius-of-gyration
of the clusters (aggregates), Rg. Between these boundaries the scattering follows a power law related to the mass
fractal dimension, Dm, whilst above the high-Q boundary the scattering follows a power law related to the surface
fractal dimension of the primary particles, Ds.

Definition
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The scattered intensity I(q) is calculated using a modified Ornstein-Zernicke equation

1(q) = scale x P(q) + background
Dy /2 6—D.—D,,)/2) "L
P(g) = {[1+ ()] """* x [1+ (¢*D)] 7
a=R2/(3Dn/2)
b=r2/[-3(Ds + Dy, — 6)/2]
scale = scale_factor x NVQ(pparticle — psolvent)z

where R, is the size of the cluster, 7 is the size of the primary particle, D; is the surface fractal dimension, D,

is the mass fractal dimension, psovent is the scattering length density of the solvent, and ppqrsicie 1S the scattering
length density of particles.

Note: The surface ( Ds ) and mass ( D,, ) fractal dimensions are only valid if 0 < surface_dim < 6,
0 < mass_dim < 6, and (sur face_dim + mass_dim) < 6 . Older versions of sasview may have the default
primary particle radius larger than the cluster radius, this was an error, also present in the Schmidt review paper
below. The primary particle should be the smaller as described in the original Hurd et.al. who also point out that
polydispersity in the primary particle sizes may affect their apparent surface fractal dimension.

I(Q) (em™)

Fig. 1.108: 1D plot corresponding to the default parameters of the model.

References

Authorship and Verification
* Converted to sasmodels by: Piotr Rozyczko Date: Jan 20, 2016
¢ Last Reviewed by: Richard Heenan Date: May 30, 2018

mono_gauss_coil

Scattering from monodisperse polymer coils

116 Chapter 1. SasView User Documentation



SasView Documentation, Release 4.2.2

Parameter | Description Units | Default value
scale Source intensity None | 1

background | Source background | cmT 0.001

i_zero Intensity at q=0 cm™ |70

rg Radius of gyration | A 75

The returned value is scaled to units of cm™! sr'!, absolute scale.

This Debye Gaussian coil model strictly describes the scattering from monodisperse polymer chains in theta
solvents or polymer melts, conditions under which the distances between segments follow a Gaussian distribution.
Provided the number of segments is large (ie, high molecular weight polymers) the single-chain form factor P(Q)
is that described by Debye (1947).

To describe the scattering from polydisperse polymer chains see the poly_gauss_coil model.
Definition
I(q) = scale - I - P(q) + background

where

Iy = ¢po]y -V (Ppoly - Psolv)2

P(q) = 2[exp(—2) + Z — 1]/ Z*
Z = (ng)2
V = M/(Nas)

Here, ¢poly is the volume fraction of polymer, V' is the volume of a polymer coil, M is the molecular weight of the
polymer, N4 is Avogadro’s Number, § is the bulk density of the polymer, ppoy is the sld of the polymer, psolv is
the sld of the solvent, and R, is the radius of gyration of the polymer coil.

The 2D scattering intensity is calculated in the same way as the 1D, but where the g vector is redefined as

q=\/+4a;

1Q) (em™)

Fig. 1.109: 1D plot corresponding to the default parameters of the model.
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References
P Debye, J. Phys. Colloid. Chem., 51 (1947) 18.

R J Roe, Methods of X-Ray and Neutron Scattering in Polymer Science, Oxford University Press, New York
(2000).

http://www.ncnr.nist.gov/staff/hammouda/distance_learning/chapter_28.pdf

peak_lorentz

A Lorentzian peak on a flat background

Parameter | Description Units | Default value
scale Source intensity None | 1

background | Source background | cm’ 0.001
peak_pos Peak postion in q AT 0.05
peak_hwhm | HWHM of peak AT 0.005

The returned value is scaled to units of cm™! sr'!, absolute scale.
This model describes a Lorentzian shaped peak on a flat background.
Definition

The scattering intensity I(q) is calculated as

l
I(q) = _oseae background

(14 (52)°)
with the peak having height of I centered at ¢y and having a HWHM (half-width half-maximum) of B.

For 2D data the scattering intensity is calculated in the same way as 1D, where the ¢ vector is defined as

q=\/a tq;

1Q) (em™)

Fig. 1.110: 1D plot corresponding to the default parameters of the model.
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References

None.

poly_gauss_coil

Scattering from polydisperse polymer coils

Parameter Description Units | Default value
scale Source intensity None | 1

background Source background | cm’! 0.001

i_zero Intensity at =0 cm [ 70

g Radius of gyration | A 75
polydispersity | Polymer Mw/Mn None | 2

The returned value is scaled to units of cm™! sr'!, absolute scale.

This empirical model describes the scattering from polydisperse polymer chains in theta solvents or polymer melts,
assuming a Schulz-Zimm type molecular weight distribution.

To describe the scattering from monodisperse polymer chains, see the mono_gauss_coil model.

Definition
I(q) = scale - Iy - P(q) + background

where
Iy = ¢)poly -V (ppoly - psolv)2
P(q) =2(1+UZ)" "V + 2 -1)/[(1+U)Z?
Z = [(qRy)*)/(1 +2U)
U= (Mw/Mn) — 1 = polydispersity ratio — 1
V =M/(Nad)
Here, ¢poy, is the volume fraction of polymer, V' is the volume of a polymer coil, M is the molecular weight of

the polymer, N4 is Avogadro’s Number, ¢ is the bulk density of the polymer, pyoly is the sld of the polymer, psoy
is the sld of the solvent, and R, is the radius of gyration of the polymer coil.

The 2D scattering intensity is calculated in the same way as the 1D, but where the ¢ vector is redefined as
q=1/4; +a;

References

O Glatter and O Kratky (editors), Small Angle X-ray Scattering, Academic Press, (1982) Page 404.

J S Higgins, H C Benoit, Polymers and Neutron Scattering, Oxford Science Publications, (1996).

S M King, Small Angle Neutron Scattering in Modern Techniques for Polymer Characterisation, Wiley, (1999).

http://www.ncnr.nist.gov/staff/hammouda/distance_learning/chapter_28.pdf

polymer_excl_volume

Polymer Excluded Volume model
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Fig. 1.111: 1D plot corresponding to the default parameters of the model.

Parameter | Description Units | Default value
scale Source intensity None | 1

background | Source background | cm’! 0.001

rg Radius of Gyration | A 60

porod_exp | Porod exponent None | 3

The returned value is scaled to units of cm™! sr'!, absolute scale.

This model describes the scattering from polymer chains subject to excluded volume effects and has been used as
a template for describing mass fractals.

Definition

The form factor was originally presented in the following integral form (Benoit, 1957)

_ Q2a2 2v 2v:|
6

n-—x

PQ) = 2/01 dz(l — x)exp {

where v is the excluded volume parameter (which is related to the Porod exponent m as v = 1/m ), a is the
statistical segment length of the polymer chain, and n is the degree of polymerization.

This integral was put into an almost analytical form as follows (Hammouda, 1993)

1 1 1 1
#@ = 1 (w0) - (50}

and later recast as (for example, Hore, 2013; Hammouda & Kim, 2017)

1 1 1 1
P(Q) = VUI/QVV (21/’U> - VUl/V’Y <Z/’U)

where v(z, U) is the incomplete gamma function

U
¥(z,U) = / dt exp(—t)t"*
0
and the variable U is given in terms of the scattering vector @ as

Q% QPRy(2v+1)(2v +2)
6 6

U
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The two analytic forms are equivalent. In the 1993 paper

_L
oUL/2v
has been factored out.
SasView implements the 1993 expression.
The square of the radius-of-gyration is defined as
) a2n2v

= o nar+2)

Note: This model applies only in the mass fractal range (ie, 5/3 <= m <= 3 ) and does not apply to surface
fractals (3 < m <= 4). It also does not reproduce the rigid rod limit (m=1) because it assumes chain flexibility
from the outset. It may cover a portion of the semi-flexible chain range (1 < m < 5/3).

A low-Q expansion yields the Guinier form and a high-Q expansion yields the Porod form which is given by

1 1 1 1
PQ = 00) = T (2> ~ it ()

Here I'(z) = 7y(x, 00) is the gamma function.

The asymptotic limit is dominated by the first term

e it () = i [mrners) | T

The special case when v = 0.5 (or m = 1/v = 2) corresponds to Gaussian chains for which the form factor is
given by the familiar Debye function.

P(Q) [exp(—Q*RY) — 1+ Q*Ry]

2
Q'R}

For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the ¢ vector is defined as
q=\/G+4a;

References
H Benoit, Comptes Rendus, 245 (1957) 2244-2247

B Hammouda, SANS from Homogeneous Polymer Mixtures - A Unified Overview, Advances in Polym. Sci. 106
(1993) 87-133

M Hore et al, Co-Nonsolvency of Poly(n-isopropylacrylamide) in Deuterated Water/Ethanol Mixtures 46 (2013)
7894-7901

B Hammouda & M-H Kim, The empirical core-chain model 247 (2017) 434-440

porod

Porod function

Parameter | Description Units | Default value
scale Source intensity None | 1
background | Source background | cmT 0.001
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Fig. 1.112: 1D plot corresponding to the default parameters of the model.

The returned value is scaled to units of cm™! sr'!, absolute scale.

This model fits the Porod function

I(q) =C/q*

to the data directly without any need for linearisation (cf. Log I(q) vs Log q).

Here C' = 27(Ap)2S, is the scale factor where S, is the specific surface area (ie, surface area / volume) of the
sample, and Ap is the contrast factor.

For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the q vector is defined as
q=\/a% +4q;

References
G Porod. Kolloid Zeit. 124 (1951) 83.

L A Feigin, D I Svergun, G W Taylor. Structure Analysis by Small-Angle X-ray and Neutron Scattering. Springer.
(1987)

power_law

Simple power law with a flat background

Parameter | Description Units | Default value
scale Source intensity None | 1

background | Source background | cm™' | 0.001

power Power law exponent | None | 4

The returned value is scaled to units of cm™! sr’!, absolute scale.

This model calculates a simple power law with a flat background.
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Fig. 1.113: 1D plot corresponding to the default parameters of the model.

Definition

—power

I(q) = scale - q + background

Note the minus sign in front of the exponent. The exponent power should therefore be entered as a positive
number for fitting.

Also note that unlike many other models, scale in this model is NOT explicitly related to a volume fraction. Be
careful if combining this model with other models.

References
None.
rpa

Random Phase Approximation

Parameter | Description Units Default value
scale Source intensity None 1
background | Source background cm’! 0.001
case_num Component organization None 1

N[4] Degree of polymerization | None 1000
Phi[4] volume fraction None 0.25
v[4] molar volume mL/mol | 100
L[4] scattering length fm 10

b[4] segment length A 5

K12 A:B interaction parameter | None -0.0004
K13 A:C interaction parameter | None -0.0004
K14 A:D interaction parameter | None -0.0004
K23 B:C interaction parameter | None -0.0004
K24 B:D interaction parameter | None -0.0004
K34 C:D interaction parameter | None -0.0004

The returned value is scaled to units of cm™! sr'!, absolute scale.
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Fig. 1.114: 1D plot corresponding to the default parameters of the model.

Definition

Calculates the macroscopic scattering intensity for a multi-component homogeneous mixture of polymers using
the Random Phase Approximation. This general formalism contains 10 specific cases

Case 0: C/D binary mixture of homopolymers

Case 1: C-D diblock copolymer

Case 2: B/C/D ternary mixture of homopolymers

Case 3: C/C-D mixture of a homopolymer B and a diblock copolymer C-D
Case 4: B-C-D triblock copolymer

Case 5: A/B/C/D quaternary mixture of homopolymers

Case 6: A/B/C-D mixture of two homopolymers A/B and a diblock C-D
Case 7: A/B-C-D mixture of a homopolymer A and a triblock B-C-D

Case 8: A-B/C-D mixture of two diblock copolymers A-B and C-D

Case 9: A-B-C-D tetra-block copolymer

Note: These case numbers are different from those in the NIST SANS package!

The models are based on the papers by Akcasu ef al. and by Hammouda assuming the polymer follows Gaussian
statistics such that R; = nb?/6 where b is the statistical segment length and n is the number of statistical segment
lengths. A nice tutorial on how these are constructed and implemented can be found in chapters 28 and 39 of
Boualem Hammouda’s ‘SANS Toolbox’.

In brief the macroscopic cross sections are derived from the general forms for homopolymer scattering and the
multiblock cross-terms while the inter polymer cross terms are described in the usual way by the y parameter.

USAGE NOTES:
* Only one case can be used at any one time.

e The RPA (mean field) formalism only applies only when the multicomponent polymer mixture is in the
homogeneous mixed-phase region.
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¢ Component D is assumed to be the “background” component (ie, all contrasts are calculated with re-

spect to component D). So the scattering contrast for a C/D blend = [SLD(component C) - SLD(component
D).

* Depending on which case is being used, the number of fitting parameters can vary.

Note:

— In general the degrees of polymerization, the volume fractions, the molar volumes, and the neutron
scattering lengths for each component are obtained from other methods and held fixed while The scale
parameter should be held equal to unity.

— The variables are normally the segment lengths (b, by, etc.) and x parameters (K ,p, K, €tC).
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Fig. 1.115: 1D plot corresponding to the default parameters of the model.
References

A Z Akcasu, R Klein and B Hammouda, Macromolecules, 26 (1993) 4136.
2. Hammouda, Advances in Polymer Science 106 (1993) 87.
B. Hammouda, SANS Toolbox https://www.ncnr.nist.gov/staff/hammouda/the_sans_toolbox.pdf.
Authorship and Verification
¢ Author: Boualem Hammouda - NIST IGOR/DANSE Date: pre 2010
* Converted to sasmodels by: Paul Kienzle Date: July 18, 2016
¢ Last Modified by: Paul Butler Date: March 12, 2017
¢ Last Reviewed by: Paul Butler Date: March 12, 2017

spinodal

Spinodal decomposition model
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Parameter | Description Units | Default value
scale Source intensity None | 1

background | Source background cm’! 0.001

gamma Exponent None | 3

q 0 Correlation peak position | A 0.1

The returned value is scaled to units of cm™! sr'!, absolute scale.
Definition

This model calculates the SAS signal of a phase separating system undergoing spinodal decomposition. The
scattering intensity I(q) is calculated as

(1+~/2)z?

1(q) = Imaa v/2 4 22t

where x = ¢q/qo, qo is the peak position, I, is the intensity at gy (parameterised as the scale parameter), and B
is a flat background. The spinodal wavelength, A, is given by 27 /qo.

The definition of I, in the literature varies. Hashimoto et al (1991) define it as
Loz = N2 Ap?

whereas Meier & Strobl (1987) give
Loz = V200

where V is the volume per monomer unit.

The exponent ~ is equal to d + 1 for off-critical concentration mixtures (smooth interfaces) and 2d for critical
concentration mixtures (entangled interfaces), where d is the dimensionality (ie, 1, 2, 3) of the system. Thus 2 <=
v <= 6. A transition from v = d + 1 to v = 2d is expected near the percolation threshold.

As this function tends to zero as g tends to zero, in practice it may be necessary to combine it with another function
describing the low-angle scattering, or to simply omit the low-angle scattering from the fit.
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Fig. 1.116: 1D plot corresponding to the default parameters of the model.

References
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H. Furukawa. Dynamics-scaling theory for phase-separating unmixing mixtures: Growth rates of droplets and
scaling properties of autocorrelation functions. Physica A 123, 497 (1984).

H. Meier & G. Strobl. Small-Angle X-ray Scattering Study of Spinodal Decomposition in
Polystyrene/Poly(styrene-co-bromostyrene) Blends. Macromolecules 20, 649-654 (1987).

T. Hashimoto, M. Takenaka & H. Jinnai. Scattering Studies of Self-Assembling Processes of Polymer Blends in
Spinodal Decomposition. J. Appl. Cryst. 24, 457-466 (1991).

Revision History
¢ Author: Dirk Honecker Date: Oct 7, 2016
* Revised: Steve King Date: Oct 25, 2018

star_polymer

Star polymer model with Gaussian statistics

Parameter | Description Units | Default value
scale Source intensity None | 1

background | Source background cm' | 0.001
rg_squared | Ensemble radius of gyration SQUARED of the full polymer | A2 100

arms Number of arms in the model None | 3

The returned value is scaled to units of cm™! sr'!, absolute scale.
Definition

Calcuates the scattering from a simple star polymer with f equal Gaussian coil arms. A star being defined as a
branched polymer with all the branches emanating from a common central (in the case of this model) point. It is
derived as a special case of on the Benoit model for general branched polymers' as also used by Richter et al.”

For a star with f arms the scattering intensity 7(q) is calculated as

1) = 3 |v = 1+ exp(=0) + T 1= expl-0)f
where
uf
"TBr-2)
and
u=(Ry)q’

contains the square of the ensemble average radius-of-gyration of the full polymer while v contains the radius of
gyration of a single arm R,,,,. The two are related as:
f

R = R?
arm 3f _ 2 g

Note that when there is only one arm, f = 1, the Debye Gaussian coil equation is recovered.

Note: Star polymers in solutions tend to have strong interparticle and osmotic effects. Thus the Benoit equation
may not work well for many real cases. A newer model for star polymer incorporating excluded volume has been
developed by Li et al in arXiv:1404.6269 [physics.chem-ph]. Also, at small ¢ the scattering, i.e. the Guinier
term, is not sensitive to the number of arms, and hence ‘scale’ here is simply I(¢ = 0) as described for the
mono_gauss_coil model, using volume fraction ¢ and volume V for the whole star polymer.

1 H Benoit J. Polymer Science, 11, 507-510 (1953)
2 D Richter, B. Farago, J. S. Huang, L. J. Fetters, B Ewen Macromolecules, 22, 468-472 (1989)
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Fig. 1.117: 1D plot corresponding to the default parameters of the model.
References

Authorship and Verification
e Author: Kieran Campbell Date: July 24, 2012
« Last Modified by: Paul Butler Date: Auguts 26, 2017
* Last Reviewed by: Ziang Li and Richard Heenan Date: May 17, 2017

surface_fractal

Fractal-like aggregates based on the Mildner reference

Parameter Description Units | Default value
scale Source intensity None | 1

background Source background cm | 0.001

radius Particle radius A 10
fractal_dim_surf | Surface fractal dimension | None | 2
cutoff_length Cut-off Length A 500

The returned value is scaled to units of cm™! sr’!, absolute scale.

This model calculates the scattering from fractal-like aggregates based on the Mildner reference.

Definition
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The scattering intensity I(q) is calculated as

I(q) = scale x P(q)S(q) + background
P(q) = F(qR)?

Fla) = 3 [sin(z) — x cos(x)]

23

_ 5—Dg 21—(5-Ds)/2 . _1 1
S(q) =T'( - Ds)§ (14 (¢¢)?] sin [—(5 — Dg) tan™'(¢¢)] ¢
scale = scale factor V Vl(ppmicle — pso1vem)2

4
vzgsz

where R is the radius of the building block, Dg is the surface fractal dimension, ¢ is the cut-off length, pgojvent 1S
the scattering length density of the solvent and pparicie is the scattering length density of particles.

Note: The surface fractal dimension is only valid if 1 < Dg < 3. The result is only valid over a limited g range,

3—5Ds ¢! < g < R, See the reference for details.
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Fig. 1.118: 1D plot corresponding to the default parameters of the model.
References
D Mildner and P Hall, J. Phys. D: Appl. Phys., 19 (1986) 1535-1545
teubner_strey

Teubner-Strey model of microemulsions

Parameter Description Units Default value
scale Source intensity None 1

background Source background cm’! 0.001
volfraction_a | Volume fraction of phase a | None 0.5

sld_a SLD of phase a 10°A2 103

sld_b SLD of phase b 10°A2 [ 6.3

d Domain size (periodicity) | A 100

xi Correlation length A 30
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The returned value is scaled to units of cm™! sr'!, absolute scale.
Definition

This model calculates the scattered intensity of a two-component system using the Teubner-Strey model. Unlike
dab this function generates a peak. A two-phase material can be characterised by two length scales - a correlation
length and a domain size (periodicity).

The original paper by Teubner and Strey defined the function as:

1
+ + background

I X —
(9) as + c1q? + coq

where the parameters ag, ¢; and ¢ are defined in terms of the periodicity, d, and correlation length ¢ as:

2
0 — [1 + ({:5)2}
¢ = —2§Q(¥)2 +2¢2

02254

and thus, the periodicity, d is given by

and the correlation length, &, is given by

-1/2
5 o 1 as 1/2 + 1 C1
h 2 C2 4 (6]
Here the model is parameterised in terms of d and £ and with an explicit volume fraction for one phase, ¢,, and
contrast, 6p% = (pg — pp)? :

— 871'(;5(1(1 - ¢a)(Ap)2c2/§
as + ¢c1q2 + cogt

I(q)

where 87, (1 — ¢o)(Ap)?e2/€ is the constant of proportionality from the first equation above.
In the case of a microemulsion, as > 0, ¢y < 0, and ¢o > 0.

For 2D data, scattering intensity is calculated in the same way as 1D, where the ¢ vector is defined as
q=\/a +q;

References
M Teubner, R Strey, J. Chem. Phys., 87 (1987) 3195
KV Schubert, R Strey, S R Kline and E W Kaler, J. Chem. Phys., 101 (1994) 5343

H Endo, M Mihailescu, M. Monkenbusch, J Allgaier, G Gompper, D Richter, B Jakobs, T Sottmann, R Strey, and
I Grillo, J. Chem. Phys., 115 (2001), 580

two_lorentzian

This model calculates an empirical functional form for SAS data characterized by two Lorentzian-type functions.
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Fig. 1.119: 1D plot corresponding to the default parameters of the model.
Parameter Description Units | Default value
scale Source intensity None | 1
background Source background cm | 0.001
lorentz_scale_1 First power law scale factor None | 10
lorentz_length_1 | First Lorentzian screening length A 100
lorentz_exp_1 First exponent of power law None | 3
lorentz_scale_2 Second scale factor for broad Lorentzian peak | None | 1
lorentz_length_2 | Second Lorentzian screening length A 10
lorentz_exp_2 Second exponent of power law None | 2

The returned value is scaled to units of cm™! sr'!, absolute scale.
Definition

The scattering intensity 7(q) is calculated as

A . c
1+ (Q4)" 14 (Q&)

where A = Lorentzian scale factor #1, C' = Lorentzian scale #2, £; and £, are the corresponding correlation lengths,
and n and m are the respective power law exponents (set n = m = 2 for Ornstein-Zernicke behaviour).

I(q) —+B

For 2D data the scattering intensity is calculated in the same way as 1D, where the ¢ vector is defined as
q=1/4a; +a;

References

None.
e Author: NIST IGOR/DANSE Date: pre 2010
» Last Modified by: Piotr rozyczko Date: January 29, 2016
¢ Last Reviewed by: Paul Butler Date: March 21, 2016
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Fig. 1.120: 1D plot corresponding to the default parameters of the model.

two_power_law

This model calculates an empirical functional form for SAS data characterized by two power laws.

Parameter | Description Units | Default value
scale Source intensity None | 1

background | Source background cm’! 0.001
coefficent_1 | coefficent A in low Q region None | 1

crossover crossover location Al 0.04

power_1 power law exponent at low Q | None | 1

power_2 power law exponent at high Q | None | 4

The returned value is scaled to units of cm™! sr'!, absolute scale.
Definition
The scattering intensity I(q) is calculated as

I(g) = Aq~™! + background ¢ <= q.
. Cq~™? + background ¢ > q.

where ¢, = the location of the crossover from one slope to the other, A = the scaling coefficent that sets the overall
intensity of the lower Q power law region, m1 = power law exponent at low Q, and m2 = power law exponent at
high Q. The scaling of the second power law region (coefficent C) is then automatically scaled to match the first
by following formula:

_ Ag?

1
q

C

Note: Be sure to enter the power law exponents as positive values!

For 2D data the scattering intensity is calculated in the same way as 1D, where the g vector is defined as

q=1/% +4;
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Fig. 1.121: 1D plot corresponding to the default parameters of the model.

References

None.
e Author: NIST IGOR/DANSE Date: pre 2010
¢ Last Modified by: Wojciech Wpotrzebowski Date: February 18, 2016
¢ Last Reviewed by: Paul Butler Date: March 21, 2016

unified_power_Rg

Unified Power Rg
Parameter | Description Units | Default value
scale Source intensity None | 1
background | Source background | cm’! 0.001
level Level number None | 1
rg[level] Radius of gyration | A 15.8
powerl[level] | Power None | 4
Bllevel] cm’! 4.5e-06
Gllevel] cmT | 400

The returned value is scaled to units of cm™! sr'!, absolute scale.
Definition

This model employs the empirical multiple level unified Exponential/Power-law fit method developed by
Beaucage. Four functions are included so that 1, 2, 3, or 4 levels can be used. In addition a O level has been
added which simply calculates

I(q) = scale/q + background

The Beaucage method is able to reasonably approximate the scattering from many different types of particles,
including fractal clusters, random coils (Debye equation), ellipsoidal particles, etc.
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The model works best for mass fractal systems characterized by Porod exponents between 5/3 and 3. It should not
be used for surface fractal systems. Hammouda (2010) has pointed out a deficiency in the way this model handles
the transitioning between the Guinier and Porod regimes and which can create artefacts that appear as kinks in the
fitted model function.

Also see the Guinier_Porod model.

The empirical fit function is:

N 2 P2 2 p2
¢ Ry, TRy (1P
I(q) = background + [Gi exp(f g )JrBi exp<fL) (T) ]
(a) ; . : qi

where

For each level, the four parameters G;, Ry;, B; and P; must be chosen. Beaucage has an additional factor £ in the
definition of ¢ which is ignored here.

For example, to approximate the scattering from random coils (Debye equation), set R,; as the Guinier radius,
Pi = 2, and BZ = 2G1/Rgl

See the references for further information on choosing the parameters.

For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the ¢ vector is defined as

q=\/a+q;
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Fig. 1.122: 1D plot corresponding to the default parameters of the model.

References

G Beaucage, J. Appl. Cryst., 28 (1995) 717-728

G Beaucage, J. Appl. Cryst., 29 (1996) 134-146

B Hammouda, Analysis of the Beaucage model, J. Appl. Cryst., (2010), 43, 1474-1478
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1.1.8 Structure Factors

hardsphere

Hard sphere structure factor, with Percus-Yevick closure

Parameter Description Units | Default value
radius_effective | effective radius of hard sphere A 50
volfraction volume fraction of hard spheres | None | 0.2

The returned value is a dimensionless structure factor, S(q).

Calculate the interparticle structure factor for monodisperse spherical particles interacting through hard sphere
(excluded volume) interactions. May be a reasonable approximation for other shapes of particles that freely rotate,
and for moderately polydisperse systems. Though strictly the maths needs to be modified (no Beta(Q) correction
yet in sasview).

radius_effective is the effective hard sphere radius. volfraction is the volume fraction occupied by the spheres.

In sasview the effective radius may be calculated from the parameters used in the form factor P(q) that this S(q)
is combined with.

For numerical stability the computation uses a Taylor series expansion at very small ¢ R, there may be a very minor
glitch at the transition point in some circumstances.

The S(Q) uses the Percus-Yevick closure where the interparticle potential is

U(r>:{oo r < 2R

0 r>2R

where 7 is the distance from the center of the sphere of a radius R.

For a 2D plot, the wave transfer is defined as

q=\/a +q;
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Fig. 1.123: 1D plot corresponding to the default parameters of the model.
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References

J K Percus, J Yevick, J. Phys. Rev., 110, (1958) 1

hayter_msa

Hayter-Penfold rescaled MSA, charged sphere, interparticle S(Q) structure factor

Parameter Description Units| Default
value

ra- effective radius of charged sphere A 20.75

dius_effective

volfraction volume fraction of spheres None | 0.0192

charge charge on sphere (in electrons) e 19

temperature temperature, in Kelvin, for Debye length calculation K 318.16

concentra- conc of salt, moles/litre, 1:1 electolyte, for Debye length M 0

tion_salt

dielectconst dielectric constant (relative permittivity) of solvent, default water, for | None | 71.08

Debye length

The returned value is a dimensionless structure factor, S(q).

This calculates the structure factor (the Fourier transform of the pair correlation function g(r)) for a system of
charged, spheroidal objects in a dielectric medium. When combined with an appropriate form factor (such as
sphere, core+shell, ellipsoid, etc), this allows for inclusion of the interparticle interference effects due to screened
coulomb repulsion between charged particles.

This routine only works for charged particles. If the charge is set to zero the routine may self-destruct! For
non-charged particles use a hard sphere potential.

The salt concentration is used to compute the ionic strength of the solution which in turn is used to compute the
Debye screening length. At present there is no provision for entering the ionic strength directly nor for use of any
multivalent salts, though it should be possible to simulate the effect of this by increasing the salt concentration.
The counterions are also assumed to be monovalent.

In sasview the effective radius may be calculated from the parameters used in the form factor P(q) that this S(q)
is combined with.

The computation uses a Taylor series expansion at very small rescaled ¢ R, to avoid some serious rounding error
issues, this may result in a minor artefact in the transition region under some circumstances.

For 2D data, the scattering intensity is calculated in the same way as 1D, where the ¢ vector is defined as
q=1/%+q;

References
J B Hayter and J Penfold, Molecular Physics, 42 (1981) 109-118
J P Hansen and J B Hayter, Molecular Physics, 46 (1982) 651-656

squarewell

Square well structure factor, with MSA closure

Parameter Description Units Default value
radius_effective | effective radius of hard sphere A 50

volfraction volume fraction of spheres None 0.04
welldepth depth of well, epsilon kT 1.5

wellwidth width of well in diameters (=2R) units, must be > 1 | diameters | 1.2
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Fig. 1.124: 1D plot corresponding to the default parameters of the model.

The returned value is a dimensionless structure factor, S(q).

This calculates the interparticle structure factor for a square well fluid spherical particles. The mean spherical
approximation (MSA) closure was used for this calculation, and is not the most appropriate closure for an attractive
interparticle potential. This solution has been compared to Monte Carlo simulations for a square well fluid,
showing this calculation to be limited in applicability to well depths € < 1.5 kT and volume fractions ¢ < 0.08.

Positive well depths correspond to an attractive potential well. Negative well depths correspond to a potential
“shoulder”, which may or may not be physically reasonable. The stickyhardsphere model may be a better choice
in some circumstances. Computed values may behave badly at extremely small g R.

The well width () is defined as multiples of the particle diameter (2R).

The interaction potential is:
o r < 2R

U(r)="—g2R=r=2RJ
0. =2R

oo r<2R
U(r)=<—e 2R<r <2RA\
0 r > 2R\

where 7 is the distance from the center of the sphere of a radius R.

In sasview the effective radius may be calculated from the parameters used in the form factor P(q) that this S(q)
is combined with.

For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the ¢ vector is defined as
q=\/a +a;

References

R V Sharma, K C Sharma, Physica, 89A (1977) 213.
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Fig. 1.125: 1D plot corresponding to the default parameters of the model.

stickyhardsphere

Sticky hard sphere structure factor, with Percus-Yevick closure

Parameter Description Units | Default value
radius_effective | effective radius of hard sphere A 50

volfraction volume fraction of hard spheres | None | 0.2

perturb perturbation parameter, epsilon | None | 0.05
stickiness stickiness, tau None | 0.2

The returned value is a dimensionless structure factor, S(q).

This calculates the interparticle structure factor for a hard sphere fluid with a narrow attractive well. A pertur-
bative solution of the Percus-Yevick closure is used. The strength of the attractive well is described in terms of
“stickiness” as defined below.

The perturb (perturbation parameter), €, should be held between 0.01 and 0.1. It is best to hold the perturbation
parameter fixed and let the “stickiness” vary to adjust the interaction strength. The stickiness, 7, is defined in
the equation below and is a function of both the perturbation parameter and the interaction strength. 7 and € are
defined in terms of the hard sphere diameter (0 = 2R), the width of the square well, A (same units as R), and the
depth of the well, U,, in units of k7". From the definition, it is clear that smaller 7 means stronger attraction.

T= = exp(u,/kT)

12¢
e=A/(c+A)
where the interaction potential is
o0 r<o
Uir)=<-U, oc<r<o+A

0 r>oc+A

The Percus-Yevick (PY) closure was used for this calculation, and is an adequate closure for an attractive inter-
particle potential. This solution has been compared to Monte Carlo simulations for a square well fluid, with good
agreement.
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The true particle volume fraction, ¢, is not equal to h, which appears in most of the reference. The two are related
in equation (24) of the reference. The reference also describes the relationship between this perturbation solution
and the original sticky hard sphere (or adhesive sphere) model by Baxter.

NB: The calculation can go haywire for certain combinations of the input parameters, producing unphysical solu-
tions - in this case errors are reported to the command window and the S(q) is set to -1 (so it will disappear on a
log-log plot). Use tight bounds to keep the parameters to values that you know are physical (test them) and keep
nudging them until the optimization does not hit the constraints.

In sasview the effective radius may be calculated from the parameters used in the form factor P(q) that this S(q)
is combined with.

For 2D data the scattering intensity is calculated in the same way as 1D, where the ¢ vector is defined as

q=1/¢+q;
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Fig. 1.126: 1D plot corresponding to the default parameters of the model.

References
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1.2 Menu Bar

The menu bar at the top of the SasView window gives you access to additional features of the program:

1.2.1 File

The File option allows you load data into SasView for analysis, or to save the work you have been doing.

Data can be loaded one file at a time, or by selecting multiple files, or by loading an entire folder of files (in which
case SasView will attempt to make an intelligent guess as to what to load based on the file formats it recognises in
the folder!).

A SasView session can also be saved and reloaded as an ‘Analysis’ (an individual model fit or invariant calculation,
etc), or as a ‘Project’ (everything you have done since starting your SasView session).
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1.2.2 Edit

The Edit option allows you to:

undo/redo your recent changes;
copy and paste parameters between SasView analysis windows;

copy parameters from a SasView analysis window to the Clipboard as either tab-delimited text (compatible
with Microsoft Excel) or LaTex-wrapped text;

generate a summary ‘Report’ of the most recent analysis performed;

reset parameter values in the P(r) Inversion analysis page.

1.2.3 View

The View option allows you to:

show the Batch Fitting Results Panel if it has been closed;
show/hide the Data Explorer Panel;
show/hide the Toolbar of icons below the Menu Bar;

select the default location that SasView looks in for data to analyse (the SasView installation directory, the
initial default, or a custom folder). NB: any change only takes effect when SasView is restarted;

change the default assignment of categories (Shapes, Shape-independent, Structure Factor) for fitting model
functions.

1.2.4 Tools

The Tools option provides access to a comprehensive range of tools and utilities. See Tools & Utilities for more
information.

1.2.5 Window

The Window option allows you to select which SasView windows are visible.

1.2.6 Analysis

The Analysis option provides access to the key functionality of SasView:

* Model Fitting;

P(r) Inversion;
Invariant Analysis;

Correlation Function Analysis (SasView 4.1 and later)

See Fitting & Other Analyses for more information.

1.2.7 Fitting

The Fitting option allows you to:

create a new FitPage;

* change optimiser (under Fit Options);

* view fit parameter correlations, distributions, and convergence traces (under Fit Results);
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* create/edit a Plugin Model.

Additional functionality is available under this menu option during particular types of model fitting, including:
* setting up a Constrained or Simultaneous Fit;
* combining a Batch Fit (an obscure capability);

* setting up Chain Fitting.

1.2.8 Help

The Help option provides access to:
¢ this help documentation;
* a Tutorials on using SasView (in pdf format);
* information on how to acknowledge SasView in publications;
* information about the version of SasView you are using;
e the Model Marketplace;

¢ a check to see if there is a more recent version of SasView.

Note: This help document was last changed by Steve King, 100ct2016

1.3 Fitting & Other Analyses

Note: In Windows use [Alt]-[Cursor left] to return to the previous page

1.3.1 Fitting Documentation

Note: In Windows use [Alt]-[Cursor left] to return to the previous page

Fitting

Note: If some code blocks are not readable, expand the documentation window

Preparing to fit data

To fit some data you must first load some data, activate one or more data sets, send those data sets to fitting, and
select a model to fit to each data set.

Instructions on how to load and activate data are in the section Loading Data.
SasView can fit data in one of three ways:

* in Single fit mode - individual data sets are fitted independently one-by-one
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e in Simultaneous fit mode - multiple data sets are fitted simultaneously to the same model with/without
constrained parameters (this might be useful, for example, if you have measured the same sample at different
contrasts)

e in Batch fit mode - multiple data sets are fitted sequentially to the same model (this might be useful, for
example, if you have performed a kinetic or time-resolved experiment and have lots of data sets!)

Selecting a model

The models in SasView are grouped into categories. By default these consist of:
* Cylinder - cylindrical shapes (disc, right cylinder, cylinder with endcaps etc)
* Ellipsoid - ellipsoidal shapes (oblate,prolate, core shell, etc)
* Parellelepiped - as the name implies
* Sphere - sheroidal shapes (sphere, core multishell, vesicle, etc)
e Lamellae - lamellar shapes (lamellar, core shell lamellar, stacked lamellar, etc)

* Shape-Independent - models describing structure in terms of density correlation functions, fractals, peaks,
power laws, etc

e Paracrystal - semi ordered structures (bcc, fcc, etc)
e Structure Factor - S(Q) models
* Plugin Models - User-created (custom/non-library) Python models

Use the Category drop-down menu to chose a category of model, then select a model from the drop-down menu
beneath. A graph of the chosen model, calculated using default parameter values, will appear. The graph will
update dynamically as the parameter values are changed.

You can decide your own model categorizations using the Category Manager.

Once you have selected a model you can read its help documentation by clicking on the Description button to the
right.

Show 1D/2D

Models are normally fitted to 1D (ie, I(Q) vs Q) data sets, but some models in SasView can also be fitted to 2D
(ie, I(Qx,Qy) vs Qx vs Qy) data sets.

NB: Magnetic scattering can only be fitted in SasView in 2D.

To activate 2D fitting mode, click the Show 2D button on the Fit Page. To return to 1D fitting model, click the
same button (which will now say Show 1D).

Category Manager

To change the model categorizations, either choose Category Manager from the View option on the menubar, or
click on the Modify button on the Fit Page.
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™ SasView - Fitting -
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The categorization of all models except the user supplied Plugin Models can be reassigned, added to, and removed
using Category Manager. Models can also be hidden from view in the drop-down menus.

BarBellMadel
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=

™ Model Category Manager E=SE=0 X"
Modify | Model Category il
BCCrystalfoder————— 2 Shapes
Enable Al BEPolyelectrolyte Shape-Independent
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Shape-Independent

Shapes

1 Shapes
Shape-Independent

n

V[ CoreMultiShellModel Shapes
CoreShellBicelleModel Shapes
CoreShellCylinderModel Shapes
CoreShellEllipscidModel Shapes
CoreShellModel Shapes

CorrLengthModel
CylinderMadel
DABModel

Shape-Independent
Shapes
Shape-Independent

‘| "

Changing category

To change category, highlight a model in the list by left-clicking on its entry and then click the Modify button. Use

the Change Category panel that appears to make the required changes.
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Change Category: BinaryH5Model u

Current categories:

Shapes

- Remove

Add Category
(") Choose Existing Shapes

@ Crea f macro mol

Add

—> pad |

Femove Category

l Remave ﬁected l

To create a category for the selected model, click the Add button. In order to delete a category, select the category
name and click the Remove Selected button. Then click Done.

Showing/hiding models

Use the Enable All / Disable All buttons and the check boxes beside each model to select the models to show/hide.
To apply the selection, click Ok. Otherwise click Cancel.

NB: It may be necessary to change to a different category and then back again before any changes take effect.

Model Functions

For a complete list of all the library models available in SasView, see the Model Documentation .

It is also possible to add your own models.

Adding your own Models

There are essentially three ways to generate new fitting models for SasView:

 Using the SasView New Plugin Model helper dialog (best for beginners and/or relatively simple models)
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* By copying/editing an existing model (this can include models generated by the New Plugin Model* dialog)
in the Python Shell-Editor Tool or Advanced Plugin Editor (suitable for all use cases)

* By writing a model from scratch outside of SasView (only recommended for code monkeys!)
Please read the guidance on Writing a Plugin Model before proceeding.

To be found by SasView your model must reside in the *~.sasview\plugin_models* folder.

Plugin Model Operations

From the Fitting option in the menu bar, select Plugin Model Operations

T SasView - Fitting -

File Edit View Tools Window Analysis [Fitting | Help

- 4 bl ) ¥ =] D MNew Fit Page
i SR Constrained or Simultanecus Fit
€ Data Explorer o | = | Levenberg-Marquardt =
Combine Batch Fit
Selecticn Options
Fit Options
Select all Data Fit Results
Data
Chain Fitting [BatchFit Only]
Plugin Model Operations » New Plugin Maodel
B | Model Sum|Multi(pl, p2)
Category Advanced Plugin Editor »
E ’Cylinder '] I Delete Plugin Models 4
Theary Load Plugin Models
[ )

and then one of the sub-options
e New Plugin Model - to create a plugin model template with a helper dialog
o SumlMulti(pl,p2) - to create a plugin model by summing/multiplying existing models in the model library
* Advanced Plugin Editor - to create/edit a plugin model in a Python shell
* Delete Plugin Models - to delete a plugin model
* Load Plugin Models - to (re-)load plugin models

New Plugin Model

Relatively straightforward models can be programmed directly from the SasView GUI using the New Plugin
Model Function.
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# New Custom Model Function

Function Mame :

| Cvervirite?

MyFunction <« Tooverwrite the existing model

e with same name if checked

Description {optional) : S . .
- Function name / file name

explx * x /2) *gammal| ) |

~——— Description for the detail information in the control panel

Fit Parameters {if any):

i - Definesthe fit parameters and the default values
N If there is no fit parameter, leave as blank.
< Python math functions 3
(See http://docs.python.org/2.6/library/math.html)
Function{s) : = *Useful math functions:
1if x > 0O: A
2 v =L + B * expi(x * X /2) * scipv.special.gamma ()
3 else:
. N K Close the panel
5if not t';rr.p;-'.'_3f'_1:'_te\[’t£'] H |
& vy =14 A

\'\
7 retorn v

. Definesthe Function.
Use the numpy or scipy functions without ‘import’ statement
- Use the math functions without ‘math.’ .
Make sure that the indentations are correct. =
3 Always return . »

To compile and to plugin the model.

>y ) o= ]

When using this feature, be aware that even if your code has errors, including syntax errors, a model file is still
generated. When you then correct the errors and click ‘Apply’ again to re-compile you will get an error informing
you that the model already exists if the ‘Overwrite’ box is not checked. In this case you will need to supply a new
model function name. By default the ‘Overwrite’ box is checked.

A model file generated by this option can be viewed and further modified using the Advanced Plugin Editor .

Note that the New Plugin Model Feature currently does not allow for parameters to be polydisperse. However

they can be edited in the Advanced Editor.

SasView version 4.2 made it possible to specify whether a plugin created with the New Plugin Model dialog is
actually a form factor P(Q) or a structure factor S(Q). To do this, simply add one or other of the following lines

under the import statements.

For a form factor:

’form_factor = True

or for a structure factor:

’structure_factor = True

If the plugin is a structure factor it is also necessary to add two variables to the parameter list:

parameters = [
['radius_effective', '', 1, [0.0, numpy.inf], 'volume', ''],
(continues on next page)
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(continued from previous page)

['volfraction', '', 1, [0.0, 1.0], '', ''],
... 1,

and to the declarations of the functions Iq and Igxy::

def Ig(x , radius_effective, volfraction, ...):

def Igxy(x, y, radius_effective, volfraction, ...):

Such a plugin should then be available in the S(Q) drop-down box on a FitPage (once a P(Q) model has been
selected).

Sum|Multi(p1,p2)

0 eny S, 2 i

Function Name : cumModel

Description (optional) : Sphere + Cylinder

custom model = scale_factor * (modell + model2)

Select
Model1 (p1): Model2 (p2):

|SpherEMndEI '-'| ‘+ v' |Cy'1inderMndel
|

N—

This option creates a custom Plugin Model of the form:

Plugin Model = scale_factor % {(scale_l » model_1) +/- (scale_2 % model_2)} +
—background

—

or:

Plugin Model = scale_factor % (modell % model2) + background

In the Easy Sum/Multi Editor give the new model a function name and brief description (to appear under the
Details button on the FitPage). Then select two existing models, as pl and p2, and the required operator, ‘+° or
“*’ between them. Finally, click the Apply button to generate and test the model and then click Close.

Any changes to a plugin model generated in this way only become effective after it is re-selected from the plugin
models drop-down menu on the FitPage. If the model is not listed you can force a recompilation of the plugins by
selecting Fitting > Plugin Model Operations > Load Plugin Models.
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SasView version 4.2 introduced a much simplified and more extensible structure for plugin models generated
through the Easy Sum/Multi Editor. For example, the code for a combination of a sphere model with a power law
model now looks like this:

from sasmodels.core import load_model_info
from sasmodels.sasview_model import make_model_from_info

model_info = load_model_info ('spheret+power_ law')
model_info.name = 'MyPluginModel'
model_info.description = 'sphere + power_law'
Model = make_model_ from_info (model_info)

To change the models or operators contributing to this plugin it is only necessary to edit the string in the brackets
after load_model_info, though it would also be a good idea to update the model name and description too!!!

The model specification string can handle multiple models and combinations of operators (+ or ) which are pro-
cessed according to normal conventions. Thus ‘modell+model2*model3’ would be valid and would multiply
model2 by model3 before adding modell. In this example, parameters in the *FitPage would be prefixed A (for
model2), B (for model3) and C (for modell). Whilst this might appear a little confusing, unless you were creating
a plugin model from multiple instances of the same model the parameter assignments ought to be obvious when
you load the plugin.

If you need to include another plugin model in the model specification string, just prefix the name of that model
with custom. For instance:

sphere+custom.MyPluginModel

To create a P(Q)*S(Q) model use the @ symbol instead of * like this:

’sphere@hardsphere

This streamlined approach to building complex plugin models from existing library models, or models available
on the Model Marketplace, also permits the creation of P(Q)*S(Q) plugin models, something that was not possible
in earlier versions of SasView.

Advanced Plugin Editor

Selecting this option shows all the plugin models in the plugin model folder, on Windows this is
CA\Users\{username}.sasview\plugin_models

You can edit, modify, and save the Python code in any of these models using the Advanced Plugin Model Editor.
Note that this is actually the same tool as the Python Shell-Editor Tool .

For details of the SasView plugin model format see Writing a Plugin Model .

Note: Model files generated with the Sum/Multi option are still using the SasView 3.x model format. Unless you
are confident about what you are doing, it is recommended that you only modify lines denoted with the ## <——
comments!

When editing is complete, select Run > Check Model from the Advanced Plugin Model Editor menu bar. An Info
box will appear with the results of the compilation and model unit tests. The model will only be usable if the tests
‘pass’.
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© Python Shell/Editor [= = [=]
File Edit View Run Options Help

*Shell* | polynomials.py --

nen

Te=st plug-in model
These are links of available functions:

http://docs.python.org/library/math.html
http://www.scipy.org/Numpy Functions by Category

nen

m

nen

FE AERRRRR AR

Please select] Info @
Note that we
Otherwise, if tRunning model 'polynomials.py'... o

## R R R R R A
nnn Success:
from sas.modd
1.1]

Ig([ 0.01 0.1 1) = [ 0.2
[ 0.1 ©0.1]) = [ 1.10498756

Igxy ([ 0.01 0.01],
1.10488756]

Q.
Q.

import math
import numpy
import os o

import sys

class Model (ModellDPlugin): #5DC N

o

##¥Y0U CAN BE MODIFY ANYTHING BETWEEN »©w »ww
##DESCRIPTICN OF MODEL PLUG-IN GOES HERE

##EXAMPLE: Class that evaluates a polynomial model.

W
name = mer
def init (self): #*¥D0 NOT CHANGE THIS LINE!!!

o
4 | 1 | r

File: C:\Users\smk78%sasview\plugin_models\polynomials.py | Line:1 | Column: 0

To use the model, go to the relevant Fit Page, select the Plugin Models category and then select the model from
the drop-down menu.

Any changes to a plugin model generated in this way only become effective after it is re-selected from the model
drop-down menu on the FitPage.

Delete Plugin Models

Simply highlight the plugin model to be removed. The operation is final!!!

NB: Models shipped with SasView cannot be removed in this way.

Load Plugin Models

This option loads (or re-loads) all models present in the ~.sasview\plugin_models folder.

Fitting Options

It is possible to specify which optimiser SasView should use to fit the data, and to modify some of the configura-

tional parameters for each optimiser.

From Fitting in the menu bar select Fit Options, then select one of the following optimisers:
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* DREAM

» Levenberg-Marquardt
* Quasi-Newton BFGS
* Differential Evolution
* Nelder-Mead Simplex

The DREAM optimiser is the most sophisticated, but may not necessarily be the best option for fitting simple
models. If uncertain, try the Levenberg-Marquardt optimiser initially.

These optimisers form the Bumps package written by P Kienzle. For more information on each optimiser, see the
Fitting Documentation.

Fitting Limits
By default, SasView will attempt to model fit the full range of the data; ie, across all Q values. If necessary,

however, it is possible to specify only a sub-region of the data for fitting.

In a FitPage or BatchPage change the Q values in the Min and/or Max text boxes. Vertical coloured bars will
appear on the graph with the data and ‘theory’ indicating the current Q limits (red = Qmin, purple = Omax).

To return to including all data in the fit, click the Reset button.

Shortcuts
Copy/Paste Parameters

It is possible to copy the parameters from one Fit Page and to paste them into another Fit Page using the same
model.

To copy parameters, either:

* Select Edit -> Copy Params from the menu bar, or

¢ Use Ctrl(Cmd on Mac) + Left Mouse Click on the Fit Page.
To paste parameters, either:

e Select Edit -> Paste Params from the menu bar, or

¢ Use Ctrl(Cmd on Mac) + Shift + Left-click on the Fit Page.

If either operation is successful a message will appear in the info line at the bottom of the SasView window.

Bookmark

To Bookmark a Fit Page either:
 Select a Fit Page and then click on Bookmark in the tool bar, or

* Right-click and select the Bookmark in the popup menu.

Status Bar & Console

The status bar is located at the bottom of the SasView window and displays messages, hints, warnings and errors.

At the right-hand side of the status bar is a button marked Console. The Console displays available message
history and some run-time traceback information.

During a long task the Console can also be used to monitor the progress.
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Single Fit Mode

NB: Before proceeding, ensure that the Single Mode radio button at the bottom of the Data Explorer is checked
(see the section Loading Data ).

This mode fits one data set.
When data is sent to the fitting it is plotted in a graph window as markers.

If a graph does not appear, or a graph window appears but is empty, then the data has not loaded correctly. Check
to see if there is a message in the Status Bar & Console or in the Console window.

Assuming the data has loaded correctly, when a model is selected a green model calculation (or what SasView calls
a ‘Theory’) line will appear in the earlier graph window, and a second graph window will appear displaying the
residuals (the difference between the experimental data and the theory) at the same X-data values. See Assessing
Fit Quality.

The objective of model-fitting is to find a physically-plausible model, and set of model parameters, that generate
a theory that reproduces the experimental data and minimizes the values of the residuals.

Change the default values of the model parameters by hand until the theory line starts to represent the experimental
data. Then check the tick boxes alongside the ‘background’ and ‘scale’ parameters. Click the Fir button. SasView
will optimise the values of the ‘background’ and ‘scale’ and also display the corresponding uncertainties on the
optimised values.

Note: If the uncertainty on a fitted parameter is unrealistically large, or if it displays as NaN, the model is most
likely a poor representation of the data, the parameter in question is highly correlated with one or more of the
other fitted parameters, or the model is relatively insensitive to the value of that particular parameter.

In the bottom left corner of the Fit Page is a box displaying a normalised value of the statistical x? parameter (the
reduced x?2, See Assessing Fit Quality) returned by the optimiser.

Now check the box for another model parameter and click Fir again. Repeat this process until all relevant param-
eters are checked and have been optimised. As the fit of the theory to the experimental data improves, the value
of ‘Reduced Chi2’ will decrease. A good model fit should produce values of Reduced Chi2 close to one, and
certainly << 100. See Assessing Fit Quality.

SasView has a number of different optimisers (see the section Fitting Options). The DREAM optimiser is the
most sophisticated, but may not necessarily be the best option for fitting simple models. If uncertain, try the
Levenberg-Marquardt optimiser initially.

Simultaneous Fit Mode

NB: Before proceeding, ensure that the Single Mode radio button at the bottom of the Data Explorer is checked
(see the section Loading Data ).

This mode is an extension of the Single Fit Mode that allows for some relatively extensive constraints between
fitted parameters in a single FitPage or between several FitPage’s (eg, to constrain all fitted parameters to be the
same in a contrast series of FitPages except for the solvent sld parameter, constrain the length to be twice that of
the radius in a single FitPage, fix the radius of the sphere in one FitPage to be the same as the radius of the cylinder
in a second FitPage, etc).

If the data to be fit are in multiple files, load each file, then select each file in the Data Explorer, and Send To
Fitting. If multiple data sets are in one file, load that file, Unselect All Data, select just those data sets to be fitted,
and Send To Fitting. Either way, the result should be that for n data sets you have 2n graphs (n of the data and
model fit, and n of the resulting residuals). But it may be helpful to minimise the residuals plots for clarity. Also
see Assessing Fit Quality.

NB: If you need to use a custom Plugin Model, you must ensure that model is available first (see Adding your own
Models ).
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Method

Now go to each FitPage in turn and:

Select the required category and model;

Unselect all the model parameters;

Enter some starting guesses for the parameters;

Enter any parameter limits (recommended);

Select which parameters will refine (selecting all is generally a bad idea. .. );
When done, select Constrained or Simultaneous Fit under Fitting in the menu bar.

In the Const & Simul Fit page that appears, select which data sets are to be simultaneously fitted (this will probably
be all of them or you would not have loaded them in the first place!).

To tie parameters between the data sets with constraints, check the ‘yes’ radio button next to Add Constraint? in
the Fit Constraints box.

To constrain all identically named parameters to fit simultaneously to the same value across all the Fitpages use
the Easy Setup drop-down buttons in the Const & Simul Fit page.

NB: You can only constrain parameters that are set to refine.
Constraints will generally be of the form
Mi Parameter] = Mj.Parameterl
however the text box after the ‘=" sign can be used to adjust this relationship; for example
Mi Parameter1 = scalar * Mj.Parameter1
A ‘“free-form’ constraint box is also provided.
Many constraints can be entered for a single fit.
When ready, click the Fit button on the Const & Simul Fit page, NOT the Fit button on the individual FitPage’s.
The results of the model-fitting will be returned to each of the individual FitPage’s.

Note that the Reduced Chi2 value returned is the SUM of the Reduced Chi2 of each fit. To see the Reduced Chi2
value for a specific FitPage, click the Compute button at the bottom of that FitPage to recalculate. Note that in
doing so the degrees of freedom will be set to Npts. See Assessing Fit Quality. Moreover in the case of constraints
the degrees of freedom are less than one might think due to those constraints.

Batch Fit Mode

NB: Before proceeding, ensure that the Single Mode radio button at the bottom of the Data Explorer is checked
(see the section Loading Data ). The Batch Mode button will be used later on!

This mode sequentially fits two or more data sets fo the same model. Unlike in simultaneous fitting, in batch fitting
it is not possible to constrain fit parameters between data sets.

If the data to be fit are in multiple files, load each file in the Data Explorer. If multiple data sets are in one file,
load just that file. Unselect All Data, then select a single initial data set to be fitted. Fit that selected data set as
described above under Single Fit Mode.

NB: If you need to use a custom Plugin Model, you must ensure that model is available first (see Adding your own
Models ).
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Method

Now Select All Data in the Data Explorer, check the Batch Mode radio button at the bottom of that panel and Send
To Fitting. A BatchPage will be created.

Data Explorer @

Theory

Load Data

Delete Data

Freeze Theory

Mew Plot

m

Append Plot To |Gra|:|h1 vl

sendTo | [Fitting -

i@ Single Mode
(") Batch Mode

NB: The Batch Page can also be created by checking the Batch Mode radio button and selecting New Fit Page
under Fitting in the menu bar.

Using the drop-down menus in the BatchPage, now set up the same data set with the same model that you just
fitted in single fit mode. A quick way to set the model parameter values is to just copy them from the earlier Single
Fit. To do this, go back to the Single Fit FitPage, select Copy Params under Edit in the menu bar, then go back to
the BatchPage and Paste Params.

When ready, use the Fir button on the BatchPage to perform the fitting, NOT the Fit button on the individual
FitPage’s.

Unlike in single fit mode, the results of batch fits are not returned to the BatchPage. Instead, a spreadsheet-like
Grid Window will appear.
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If you want to visually check a graph of a particular fit, click on the name of a Data set in the Grid Window and
then click the View Fits button. The data and the model fit will be displayed. If you select mutliple data sets they
will all appear on one graph.

C sworion R e

File Edit
A | B | [ [ D | E | F | G -
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Selection Range
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e Highlight the data set or the Chi2 column first

NB: In theory, returning to the BatchPage and changing the name of the I(Q) data source should also work, but at
the moment whilst this does change the data set displayed it always superimposes the ‘theory’ corresponding to
the starting parameters.

If you select a ‘Chi2’ value and click the View Fits button a graph of the residuals for that data set is displayed.
Again, if you select multiple ‘Chi2’ values then all the residuals data will appear on one graph. Also see Assessing
Fit Quality.

Chain Fitting

By default, the same parameter values copied from the initial single fit into the BatchPage will be used as the start-
ing parameters for all batch fits. It is, however, possible to get SasView to use the results of a fit to a preceding data
set as the starting parameters for the next fit in the sequence. This variation of batch fitting is called Chain Fitting,
and will considerably speed up model-fitting if you have lots of very similar data sets where a few parameters are
gradually changing. Do not use chain fitting on disparate data sets.

To use chain fitting, select Chain Fitting under Fitting in the menu bar. It toggles on/off, so selecting it again will
switch back to normal batch fitting.

Grid Window

The Grid Window provides an easy way to view the results from batch fitting. It will be displayed automatically
when a batch fit completes, but may be opened at any time by selecting Show Grid Window under View in the
menu bar.
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# SansYiew - Fitting -
File Edit R=R Analysis Tool

Fiting Graph

y [

- e Hide Data Explorer

Data Explof Hide Toolbar

Selection ¢ Show Batch Results

selact all Startup Setting

Data N

Once a batch fit is completed, all model parameters are displayed but not their uncertainties. To view the uncer-
tainties, click on a given column then go to Edit in the menu bar, select Insert Column Before and choose the
required data from the list. An empty column can be inserted in the same way.

To remove a column from the grid, click on the column header and choose Remove Column under Edit in the
menu bar. The same functionality also allows you to re-order columns.

NB: You cannot insert/remove/re-order the rows in the Grid Window.

All of the above functions are also available by right-clicking on a column label.

I Batch Window

File Edit
[
1 A B c Insert column before background  » Empty  H

chiz Data Insert column after background 4 temperature

2/14.878 cyl_400_20. txt Remove Column error on sldSaly 5=-005
3|1.6202 10004 _sphere_sm. xml - o 1..;. TUEY  |oader i2e-008
414535 10004 _sphere_dsm,xml 61,957 [u} / 0.8355  arroron sldsph le-00a
5/1,3543 latex_smeared.xml [1] 2325 [u} 0.6472  arror on scale lEe-008
6 1.=QNE cyl_testdatal. tut 1. 2QNB 1. =QNE 120N error onbackground  MB
7 1099.1 £yl_400_40.txt 38.734 ] 22081 orror on radics 6e-006
B|511.53 latex_smeared.xml 133.28 [u} 0, 1838 p———r=rrne=guarr=sraa s 5 -006
9

NB: If there is an existing Grid Window and another batch fit is performed, an additional ‘Table’ tab will be added
to the Grid Window.

The parameter values in the currently selected table of the Grid Window can be output to a CSV file by choosing
Save As under File in the (Grid Window) menu bar. The default filename includes the date and time that the batch
fit was performed.

Saved CSYV files can be reloaded by choosing Open under File in the Grid Window menu bar. The loaded param-
eters will appear in a new table tab.
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Il Batch Window
=l Edit

Cpen i | B

Open with Excel

_20.txt

Save As
10004 _sphere_sm,
4 14595 10004 _sphere_dsn
51,3543 lztex_smeared.xml
6(1.#QMB cyl_testdatal.tut

NB: Saving the Grid Window does not save any experimental data, residuals or actual model fits. Consequently if
you reload a saved CSV file the ability to View Fits will be lost.

Parameter Plots

Any column of numeric parameter values can be plotted against another using the Grid Window. Simply select
one column at the time and click the Add button next to the required X/Y-axis Selection Range text box. When
both the X and Y axis boxes have been completed, click the Plot button.

When the Add button is clicked, SasView also automatically completes the X/Y-axis Label text box with the heading
from Row 1 of the selected table, but different labels and units can be entered manually.

oo o

™ Batch Window

File Edit
A | B | C | D [ E [ F | G -
1|Chi2 Data background radius errar on radius scale sldSalv L
2|14555,3024251 10004 _sphere_dsm.xml -52,7847602312 62,0708750032 350564.237511 0.832539734542 |1.08352619215e-06
3|14573,.7308899 1000A_sphere_sm.xml | -53.103104744 |63.4838036783 15202,7905345 0.875828609157 | 1.0615771963e-06
4|14,8773250409 cyl_400_20. txt 1.095198600225 | 40.6322815793 |0,309365060051 EpEEENLEEREEEES 2, 2032098519707
5|1099,12028341 cyl_400_40. txt 5.82667298758 | B9.7705047132 0.09084453948032 |1.57707251135 | 1.08545405512e-07
6|7.54731143325e+12 |cyl_testdatal. tut 0.0 0.0 [¥] 1e-06
7|3,15055429508e+12 cyl_testdataZ. txt 0.0 0.0 [¥] 1.0 06
B
9
m b
. L4
¥-axis Label F[2:2],F[4:4],F[5:6], X-axis Label gzle ¥-axis Unit
Selection Range
Y-axis Label D[2:2],0[4:4],D[&:6], Y-axis Label radius ¥-axis Unit g\aps
Selection Range
dY-Bar E[2:2] E[4:4] £[6:6],
Selection Range
| viewFis | [ Pt

Hiaohliaht a column for each ax

The X/Y-axis Selection Range can be edited manually. The text control box recognises the operators +, -, *, /, or
‘pow’, and allows the following types of expression :

1. if an axis label range is a function of 1 or more columns, write this type of expression

constant] * column_namel [minimum row index : maximum row index] operator constant2 * col-
umn_name2 [minimum row index : maximum row index]
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Example: radius [2 : 5] -3 * scale [2: 5]

2. if only some values of a given column are needed but the range between the first row and the last row used
is not continuous, write this type of expression

column_namel [minimum row index1 : maximum row index1] , column_namel [minimum row index2 :
maximum row index2]

Example: radius [2 : 5], radius [10 : 25]

Combined Batch Fit Mode

The purpose of the Combined Batch Fit is to allow running two or more batch fits in sequence without overwriting
the output table of results. This may be of interest for example if one is fitting a series of data sets where there is
a shape change occurring in the series that requires changing the model part way through the series; for example
a sphere to rod transition. Indeed the regular batch mode does not allow for multiple models and requires all the
files in the series to be fit with single model and set of parameters. While it is of course possible to just run part of
the series as a batch fit using model one followed by running another batch fit on the rest of the series with model
two (and/or model three etc), doing so will overwrite the table of outputs from the previous batch fit(s). This may
not be desirable if one is interested in comparing the parameters: for example the sphere radius of set one and the
cylinder radius of set two.

Method

In order to use the Combined Batch Fit, first load all the data needed as described in Loading Data. Next start up
two or more BatchPage fits following the instructions in Batch Fit Mode but DO NOT PRESS FIT. At this point
the Combine Batch Fit menu item under the Fitting menu should be active (if there is one or no BatchPage the
menu item will be greyed out and inactive). Clicking on Combine Batch Fit will bring up a new panel, similar to
the Const & Simult Fit panel. In this case there will be a checkbox for each BatchPage instead of each FitPage
that should be included in the fit. Once all are selected, click the Fit button on the BatchPage to run each batch fit
in sequence

© SasView - Fitting - - X
File Edit View Tools Analysis Fitting Window Help
adEn A E[C [Combined Batch
(o o| &= © Fit panel - Active Fitting Optimizer: Levenberg-Marquardt Om||=Ew|| = o o e =
Selection Options ~ FitPagel | BatchPage2 | BatchPagel | Combined Batch X -
10!
Unselect all Data Fit Combinations
——M1 [044753_t25 dat]
= = ~ [Belectait
#--[] 044753 t40.dat &
5[ 044753 t45.dat Model Title Jill Model ___JData | FitPage | 5
@[] 044753 _t5.dat Ome gaussian_peak 044753 1180.dat - | BatchPage2 = 100 $ 0o,
@[] 044753_t50.dat q
broad_peak - | BatchPagel 2
@[] 044753_t60.dat Om P 044753 125.dat 9 g
@[] 044753 £70.dat =
- [] 044753 _t80.dat
-] 044753 _t90.dat
v Fit 10
” < 10 10 10°
it in Parallel all Data sets Fit HELP gy
% L] time_Table1_1 and model selected.
= - - v © o |[® =
Load Data
¢ 044753_t180.dat
Delete Data ———M2 [044753_t180 dat]
oo
Freeze Theory %
New Plot
\ppend Plot T Graph1 v
= 10! 10°
Send To itting v et
() Sinale Mode v B
I Plotting completed! E—

The batch table will then pop up at the end as for the case of the simple Batch Fitting with the following caveats:

Note: The order matters. The parameters in the table will be taken from the model used in the first BatchPage of
the list. Any parameters from the second and later BatchPage s that have the same name as a parameter in the first
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will show up allowing for plotting of that parameter across the models. The other parameters will not be available
in the grid.

Note: a corralary of the above is that currently models created as a sumimultiply model will not work as desired
because the generated model parameters have a p#_ appended to the beginning and thus radius and p1_radius will
not be recognized as the same parameter.

© Batch Fitting Results Panel —
File
. A . B . c . D . E | F _

1/Chi2 Data background peak_pos scale sigma time
2/0.869135233093 044753 _t1.dat 0480189924603 0.172084281104 1 - 1
3'0.964936933908 044753 t10.dat |-1.0071285182 |0.175284347323 1 - 10
4/4.07016433833 044753_t100.dat |0.776968327097 |0.0978755226003 0.535557543636 0.0725686391063 100
5(5.0352326401 | 044753_t120.dat 0.763912383709 0.0955755512781 0.540815341451 |0.0750224573744 120
6'4.45347362492 044753_t140.dat |0.78896736692 |0.0894691283139 0.587669157614 0.0740592499018 |140
7/0.816891703599 044753 _t15.dat  0.46110767722 0.168165866669 1 - 15
8'5.54325458439 044753_t160.dat |0.763621022695 |0.0890335866288 0.557351605817 0.0790958367753 | 160
9/5.4663133165 044753_t180.dat |0.779080060226 0.103539793725 |0.54834986572 |0.0688095258582 |180
10/1.20521525967 044753 _t20.dat |0.644078696197 0.166531317784 1 - 20
11/5.18777647715 044753_t200.dat |0.786518001593 |0.0962391673169 0.581116427658 0.0714915464226 (200
12|1.1607383669  044753_t25.dat  0.717733762649 0.161139513083 |1 - 25

Je—s Py ere=—vrerLy PP R ——— A DY -

Table1

X-axis_LabeI | G[2:22], | Add X-axis Label X-axis Unit I:

Selection Range

V-axis Label | D[2:22], | Add Y-axis Label Y-axis Unit | g A4S

Selection Range

dY-Bar (Optional) I Add

Selection Range

Plot Fits/Residuals
To plot the fits (or residuals), click the 'View Fits' button R Fis HELP
after highlighting the Data names (or Chi2 values).
< >

In the example shown above the data is a time series with a shifting peak. The first part of the series was fitted
using the broad_peak model, while the rest of the data were fit using the gaussian_peak model. Unfortunately the
time is not listed in the file but the file name contains the information. As described in Grid Window, a column
can be added manually, in this case called time, and the peak position plotted against time.
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© SasView - Fitting - - [Graph8] — O pd
€ FEile Edit View Tools Analysis Fitting Window Help - & X
= ‘1 \i ) ¥y 15 G , uff Bookmarks ¥ mbined Batch
0.20 -
I # peak _pos Tablel 6
olsp*®
o
e

0.16 | o*
:.',." LK) .
~— . o
0
g 014}
el
]
'
Q

0.12¢

.
0.10
. . 1
. [
0.08 L A
0 50 100 150 200
time (s)
= =l
OO+ = 6
|. Plotting completed! Console

Note the discontinuity in the peak position. This reflects the fact that the Gaussian fit is a rather poor model for
the data and is not actually finding the peak.

*Document History*

2017-09-10 Paul Butler
2017-09-15 Steve King
2018-03-05 Paul Butler

Assessing Fit Quality

When performing model-fits to some experimental data it is helpful to be able to gauge how good an individual
fit is, how it compares to a fit of the same model to another set of data, or how it compares to a fit of a different
model to the same data.

One way is obviously to just inspect the graph of the experimental data and to see how closely (or not!) the
‘theory’ calculation matches it. But SasView also provides two other measures of the quality of a fit:

%2 (or ‘Chi2’; pronounced ‘chi-squared’)

¢ Residuals
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Chi2

x? is a statistical parameter that quantifies the differences between an observed data set and an expected dataset
(or ‘theory’) calculated as

X’ = Z[(Y’ — theory;)? /error?]

Fitting typically minimizes the value of x2. For assessing the quality of the model and its “fit” however, SasView
displays the traditional reduced x% which normalizes this parameter by dividing it by the number of degrees of
freedom (or DOF). The DOF is the number of data points being considered, N, reduced by the number of free
(i.e. fitted) parameters, IVp,,,. Note that model parameters that are kept fixed do not contribute to the DOF (they
are not “free”). This reduced value is then given as

X# = D _I(Yi — theory;)? ferrorf]/[Npus — Npar]

Note that this means the displayed value will vary depending on the number of parameters used in the fit. In
particular, when doing a calculation without a fit (e.g. manually changing a parameter) the DOF will now equal
Npts and the X?z will be the smallest possible for that combination of model, data set, and set of parameter values.

When Nps > Npay as it should for proper fitting, the value of the reduced x% will not change very much.
For a good fit, x% tends to 1.

X% is sometimes referred to as the ‘goodness-of-fit’ parameter.

Residuals

A residual is the difference between an observed value and an estimate of that value, such as a ‘theory’ calculation
(whereas the difference between an observed value and its frue value is its error).

SasView calculates ‘normalized residuals’, R;, for each data point in the fit:
R; = (Y; — theory,)/error;

Think of each normalized residual as the number of standard deviations between the measured value and the
theory. For a good fit, 68% of R; will be within one standard deviation, which will show up in the Residuals plot
as R; values between —1 and +1. Almost all the values should be between —3 and +3.

Residuals values larger than 43 indicate that the model is not fit correctly, the wrong model was chosen (e.g.,
because there is more than one phase in your system), or there are problems in the data reduction. Since the
goodness of fit is calculated from the sum-squared residuals, these extreme values will drive the choice of fit
parameters. Any uncertainties calculated for the fitting parameters will be meaningless.

Document History

2015-06-08 Steve King
2017-09-28 Paul Kienzle
2018-03-04 Paul Butler

Polydispersity & Orientational Distributions

For some models we can calculate the average intensity for a population of particles that possess size and/or
orientational (ie, angular) distributions. In SasView we call the former polydispersity but use the parameter PD
to parameterise both. In other words, the meaning of PD in a model depends on the actual parameter it is being
applied too.

The resultant intensity is then normalized by the average particle volume such that

P(q) = scale(F* F)/V + background
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where F is the scattering amplitude and (-) denotes an average over the distribution f(x; Z, o), giving

1
P(q) = sc‘z;e / f(z;%,0)F?(q, ) dr + background
R

Each distribution is characterized by a center value Z or x4, a width parameter o (note this is not necessarily the
standard deviation, so read the description of the distribution carefully), the number of sigmas N, to include from
the tails of the distribution, and the number of points used to compute the average. The center of the distribution
is set by the value of the model parameter.

The distribution width applied to volume (ie, shape-describing) parameters is relative to the center value such that
o = PD - z. However, the distribution width applied to orientation parameters is just o = PD.

N, determines how far into the tails to evaluate the distribution, with larger values of N, required for heavier
tailed distributions. The scattering in general falls rapidly with gr so the usual assumption that f(r — 3c,.) is tiny
and therefore f(r — 30,.) f(r — 30,.) will not contribute much to the average may not hold when particles are large.
This, too, will require increasing N, .

Users should note that the averaging computation is very intensive. Applying polydispersion and/or orientational
distributions to multiple parameters at the same time, or increasing the number of points in the distribution, will
require patience! However, the calculations are generally more robust with more data points or more angles.

The following distribution functions are provided:

e Uniform Distribution

* Rectangular Distribution

* Gaussian Distribution

* Boltzmann Distribution

* Lognormal Distribution

* Schulz Distribution

e Array Distribution
These are all implemented as number-average distributions.
Additional distributions are under consideration.

Beware: when the Polydispersity & Orientational Distribution panel in SasView is first opened, the default
distribution for all parameters is the Gaussian Distribution. This may not be suitable. See Suggested
Applications below.

Note: In 2009 IUPAC decided to introduce the new term ‘dispersity’ to replace the term ‘polydispersity’ (see
Pure Appl. Chem., (2009), 81(2), 351-353 in order to make the terminology describing distributions of chemical
properties unambiguous. However, these terms are unrelated to the proportional size distributions and orientational
distributions used in SasView models.

Suggested Applications

If applying polydispersion to parameters describing particle sizes, consider using the Lognormal or Schulz distri-
butions.

If applying polydispersion to parameters describing interfacial thicknesses or angular orientations, consider using
the Gaussian or Boltzmann distributions.

If applying polydispersion to parameters describing angles, use the Uniform distribution. Beware of using distri-
butions that are always positive (eg, the Lognormal) because angles can be negative!

The array distribution allows a user-defined distribution to be applied.
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Uniform Distribution

The Uniform Distribution is defined as

Norm

f(z) = 1 {1 for|la —Z| <o

0 forjlz—Z| >0

where Z (Tmean in the figure) is the mean of the distribution, ¢ is the half-width, and Norm is a normalization factor
which is determined during the numerical calculation.

The polydispersity in sasmodels is given by

PD=o0/%

For MNpts =11,
the star points are used to describe the distribution
in the numerical computation,

04 : Xrnean

Fig. 1.127: Uniform distribution.

The value N, is ignored for this distribution.

Rectangular Distribution

The Rectangular Distribution is defined as

~ Norm

fla) = 1 {1 for |z —z| <w

0 for|z—Z >w

where T (Zmean in the figure) is the mean of the distribution, w is the half-width, and Norm is a normalization
factor which is determined during the numerical calculation.

Note that the standard deviation and the half width w are different!
The standard deviation is

o=w/V3
whilst the polydispersity in sasmodels is given by

PD =0/Z

Note: The Rectangular Distribution is deprecated in favour of the Uniform Distribution above and is described
here for backwards compatibility with earlier versions of SasView only.
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() For MNpts=11 and Nsigmas =2,

the star points are used to describe the distribution

in the actual numerical computation.
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Fig. 1.128: Rectangular distribution.

Gaussian Distribution

The Gaussian Distribution is defined as

where T (Zmean in the figure) is the mean of the distribution and Norm is a normalization factor which is determined
during the numerical calculation.

The polydispersity in sasmodels is given by

PD =0/Z

fi(x) For Npts=11 and Nsigmas = 3,
the star points are used to describe the distribution
in the actual numerical computation.

1
1
1
]
1
¥
i
1
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l
L

Xmean

Xmean-30 Kmean+30

Fig. 1.129: Normal distribution.
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Boltzmann Distribution

The Boltzmann Distribution is defined as

fa) = o exp (—”C = x')

where Z (Zmean in the figure) is the mean of the distribution and Norm is a normalization factor which is determined
during the numerical calculation.

The width is defined as
kT
- E

which is the inverse Boltzmann factor, where k is the Boltzmann constant, 7" the temperature in Kelvin and F a
characteristic energy per particle.

g

For Mpts =11 and MNsigma = 3,
the star points are used to describe the distribution
in the numerical computation,

0 T T T T T 1

)(mean_30 Hrnean T 30

Fig. 1.130: Boltzmann distribution.

Lognormal Distribution

The Lognormal Distribution describes a function of x where In(z) has a normal distribution. The result is a
distribution that is skewed towards larger values of x.

The Lognormal Distribution is defined as

Fo) = e (—; (1“(‘”3,_ s )2>

where Norm is a normalization factor which will be determined during the numerical calculation, ¢ = In(Zmeq)
and Tneq 1s the median value of the lognormal distribution, but o is a parameter describing the width of the
underlying normal distribution.

Tmed Will be the value given for the respective size parameter in sasmodels, for example, radius=60.
The polydispersity in sasmodels is given by
PD =0 = p/Zmed
The mean value of the distribution is given by Z = exp(u + 02/2) and the peak value by max z = exp(u — o2).
The variance (the square of the standard deviation) of the lognormal distribution is given by
v = [exp(0?) — 1] exp(2u + 0?)
Note that larger values of PD might need a larger number of points and N, .

For further information on the Lognormal distribution see: http://en.wikipedia.org/wiki/Log-normal_distribution
and http://mathworld.wolfram.com/LogNormalDistribution.html
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fx) For Mpts =11 and Nsigmas =3,
the star points are used to describe the distribution
inthe actual numerical computation.
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Fig. 1.131: Lognormal distribution for PD=0.1.
Schulz Distribution

The Schulz (sometimes written Schultz) distribution is similar to the Lognormal distribution, in that it is also
skewed towards larger values of x, but which has computational advantages over the Lognormal distribution.

The Schulz distribution is defined as
[-(z + 1)z/7]
z'(z+1)

where T (Tmean in the figure) is the mean of the distribution, Norm is a normalization factor which is determined
during the numerical calculation, and z is a measure of the width of the distribution such that

z=(1-p)/p*

where p is the polydispersity in sasmodels given by

£(2) = o (o 4+ 1) (/7).

PD=p=o/Z
and o is the RMS deviation from Z.

Note that larger values of PD might need a larger number of points and N,. For example, for PD=0.7 with
radius=60 A, at least Npts>=160 and Nsigmas>=15 are required.

fi(x) Far Npts =11 and Nsigmas = 3,
the star points are used to describe the distribution
inthe actual numerical computation.

*

_ A

—~+ = =

Krmeas=30F Kmean®30

=]

s s - —————

Fig. 1.132: Schulz distribution.

For further information on the Schulz distribution see: M Kotlarchyk & S-H Chen, J Chem Phys, (1983), 79, 2461
and M Kotlarchyk, RB Stephens, and JS Huang, J Phys Chem, (1988), 92, 1533
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Array Distribution

This user-definable distribution should be given as a simple ASCII text file where the array is defined by two
columns of numbers: x and f(z). The f(z) will be normalized to 1 during the computation.

Example of what an array distribution file should look like:

30 | 0.1
32 103
35104
36 | 0.5
37 | 0.6
39 | 0.7
41 | 0.9

Only these array values are used computation, therefore the parameter value given for the model will have no
affect, and will be ignored when computing the average. This means that any parameter with an array distribution
will not be fitable.

Note about DLS polydispersity

Several measures of polydispersity abound in Dynamic Light Scattering (DLS) and it should not be assumed that
any of the following can be simply equated with the polydispersity PD parameter used in SasView.

The dimensionless Polydispersity Index (PI) is a measure of the width of the distribution of autocorrelation
function decay rates (not the distribution of particle sizes itself, though the two are inversely related) and is
defined by ISO 22412:2017 as

PI = pp/T?
where /1, is the second cumulant, and T'? is the intensity-weighted average value, of the distribution of decay rates.

If the distribution of decay rates is Gaussian then
PI = 02212
where o is the standard deviation, allowing a Relative Polydispersity (RP) to be defined as
RP=0¢/T =v2-PI

PI values smaller than 0.05 indicate a highly monodisperse system. Values greater than 0.7 indicate significant
polydispersity.

The size polydispersity P-parameter is defined as the relative standard deviation coefficient of variation
P=+Vv/R

where v is the variance of the distribution and R is the mean value of R. Here, the product PR is equal to the
standard deviation of the Lognormal distribution.

P values smaller than 0.13 indicate a monodisperse system.

For more information see:

ISO 22412:2017, International Standards Organisation (2017).

Polydispersity: What does it mean for DLS and Chromatography.

Dynamic Light Scattering: Common Terms Defined, Whitepaper WP111214. Malvern Instruments (2011).
S King, C Washington & R Heenan, Phys Chem Chem Phys, (2005), 7, 143.

T Allen, in Particle Size Measurement, 4th Edition, Chapman & Hall, London (1990).

Document History
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Resolution Functions

Sometimes the instrumental geometry used to acquire the experimental data has an impact on the clarity of features
in the reduced scattering curve. For example, peaks or fringes might be slightly broadened. This is known as O
resolution smearing. To compensate for this effect one can either try and remove the resolution contribution -
a process called desmearing - or add the resolution contribution into a model calculation/simulation (which by
definition will be exact) to make it more representative of what has been measured experimentally - a process
called smearing. Sasmodels does the latter.

Both smearing and desmearing rely on functions to describe the resolution effect. Sasmodels provides three
smearing algorithms:

* Slit Smearing
* Pinhole Smearing
* 2D Smearing

The @ resolution values should be determined by the data reduction software for the instrument and stored with
the data file. If not, they will need to be set manually before fitting.

Slit Smearing

This type of smearing is normally only encountered with data from X-ray Kratky cameras or X-ray/neutron
Bonse-Hart USAXS/USANS instruments.

The slit-smeared scattering intensity is defined by

! /OO dev(u)/oo duWa(u) T (Vg + 02 + [uf?)

*~ Norm J___ e
where Norm is given by
/ dv W, (v) / du Wy, (u)
[Equation 1]

The functions W, (v) and W, (u) refer to the slit width weighting function and the slit height weighting determined
at the given ¢ point, respectively. It is assumed that the weighting function is described by a rectangular function,
such that

Wv(v) = 5(‘U| < AQU)

[Equation 2]

and
Wy (u) = 6(lu| < Agy)

[Equation 3]
so that Agq = [ da Wy (a) for a as v and w.
Here Agq, and Ag, stand for the the slit height (FWHM/2) and the slit width (FWHM/2) in ¢ space.
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This simplifies the integral in Equation 1 to

Is(q)

/Aqv dv /OA% duT (Vig+ 02 +u?)

Norm
[Equation 4]

which may be solved numerically, depending on the nature of Ag,, and Ag,.

Solution 1

For Ag, = 0 and Ag, = constant

I(q) ~ /OA% dul (\/q2 +u2) = /OAqu d <\/q/2 _ q2) I(q")

For discrete ¢ values, at the ¢ values of the data points and at the ¢ values extended up to gy = ¢; + Ag, the
smeared intensity can be approximately calculated as

N-1

N-1
~ ) [\/Q?H —q; = \/qu_qiz} I(q;) ) Wi I(g)
Jj=t

=1

<.

[Equation 5]
where W;; = 0 for I, when j <iorj > N — 1.

Solution 2

For Ag, = constant and Ag, =0

Similar to Case 1

N-1 N-1
~ Y Mg —al 1(g) = Y Wi; I(g))
Jj=p Jj=p

for g, = ¢ — Agy and gy = ¢; + Agy
[Equation 6]
where W;; = 0 for I, when j < porj > N — 1.

Solution 3

For Aq, = constant and Ag, = constant

In this case, the best way is to perform the integration of Equation 1 numerically for both slit height and slit width.
However, the numerical integration is imperfect unless a large number of iterations, say, at least 10000 by 10000
for each element of the matrix W, is performed. This is usually too slow for routine use.

An alternative approach is used in sasmodels which assumes slit width << slit height. This method combines
Solution 1 with the numerical integration for the slit width. Then

J(q) ~ Z Z [\ 241~ (s + (kDau/L))2 =/ = (g5 + (kDau/1))2] (Aqu /L) I(gy)
k=—L
v
~ Z Wi I(QJ)
Jj=p
[Equation 7]

for g, = q; — Agy and g = q; + Agy
where W;; = 0 for I, when j < porj > N — 1.
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Pinhole Smearing

This is the type of smearing normally encountered with data from synchrotron SAXS cameras and SANS
instruments.

The pinhole smearing computation is performed in a similar fashion to the slit-smeared case above except that the
weight function used is a Gaussian. Thus Equation 6 becomes

N-—1
Li(g:) ~ Y lerf(gz41) — erf(q;)] I(q;)
§=0
N-—1
~ Wij I(Q])
§=0
[Equation 8]
2D Smearing

The 2D smearing computation is performed in a similar fashion to the 1D pinhole smearing above except that the
weight function used is a 2D elliptical Gaussian. Thus

- (w — o)’ |, ' = yz))Qﬂ 1)

2
2036 20%

Is(zo, yo) = A// dx'dy’ exp

X?24+Y?
= Aoy oy // dXdY exp [—(2—’—)] 0w Xy, 0y Y + 10)

2
= Aoy oy // dRd® Rexp <—Jz> I(04, Rcos © + x(, 0,y Rsin © + )

[Equation 9]
In Equation 9, 2 = qcos(f), yo = ¢sin(f), and the primed axes are all in the coordinate rotated by an angle ¢

about the z-axis (see the figure below) so that x{, = xo cos(8) + yo sin(f) and yj, = —z sin(f) + yo cos(#). Note
that the rotation angle is zero for a z-y symmetric elliptical Gaussian distribution. The A is a normalization factor.

Now we consider a numerical integration where each of the bins in 6§ and R are evenly (this is to simplify the

equation below) distributed by Af and AR respectively, and it is further assumed that I(x’,y’) is constant within
the bins. Then

- R; — AR/2)? R+ AR/2)? ,
Is(wo, yo) = Aoy oy Z A© [exp ((2/)> — exp (<2/))] I(04 R; cos ©; + g, oy R sin ©; + y)
~ Z Wz 1(016R1 COS @1 + .’E6, Jy()Rz sin @2 + y(’))

[Equation 10]

Since the weighting factor on each of the bins is known, it is convenient to transform z’-y’ back to z-y coordinates
(by rotating it by —# around the z-axis).

Then, for a polar symmetric smear

Is(zo, yo) ~ Z W, I(x' cos 0 — y' sin 6, x'sinf + y' cos 6)
[Equation 11]
where
x' = 04 R; cos ©; +

y = oy, R; sin O, + v

q =/ + v
0

o~ o
Il

T
Y
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Fig. 1.133: Coordinate axis rotation for 2D resolution calculation.

170 Chapter 1. SasView User Documentation



SasView Documentation, Release 4.2.2

while for a z-y symmetric smear

n

(o, yo) = Y _ WiI(2/, o)

i
[Equation 12]
where

2" = 04 R; cos ©; +

y = oy, Risin 0, +

The current version of sasmodels uses Equation 11 for 2D smearing, assuming that all the Gaussian weighting
functions are aligned in the polar coordinate.

Weighting & Normalization

In all the cases above, the weighting matrix W is calculated on the first call to a smearing function, and includes
~60 ¢ values (finely and evenly binned) below (>0) and above the ¢ range of data in order to smear all data points
for a given model and slit/pinhole size. The Norm factor is found numerically with the weighting matrix and
applied on the computation of I.
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Polarisation/Magnetic Scattering

Models which define a scattering length density parameter can be evaluated as magnetic models. In general, the
scattering length density (SLD = ) in each region where the SLD is uniform, is a combination of the nuclear and
magnetic SLDs and, for polarised neutrons, also depends on the spin states of the neutrons.

For magnetic scattering, only the magnetization component M perpendicular to the scattering vector QQ con-
tributes to the magnetic scattering length.

The magnetic scattering length density is then

Bum = ;ﬂU'MJ_ =Dpyo-My
UB

where v = —1.913 is the gyromagnetic ratio, pp is the Bohr magneton, r is the classical radius of electron, and
o is the Pauli spin.

Assuming that incident neutrons are polarized parallel (+) and anti-parallel (—) to the z’ axis, the possible spin
states after the sample are then:

* Non spin-flip (++) and (——)
* Spin-flip (+—) and (—+)

Each measurement is an incoherent mixture of these spin states based on the fraction of + neutrons before (u;)
and after (us) the sample, with weighting:
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Mo
M
x’ n
z,7 X

M_ = (Mlx, M.y, MLz)

Ideally the experiment would measure the pure spin states independently and perform a simultaneous analysis of
the four states, tying all the model parameters together except u; and uy.

Polarization [up) direction Magnetization direction Polarization (up) direction

If the angles of the () vector and the spin-axis ' to the x - axis are ¢ and 6,,,,, respectively, then, depending on the
spin state of the neutrons, the scattering length densities, including the nuclear scattering length density (5 ) are

B++ = Bn F DM, for non spin-flip states
and
Birs = —Dp(M 1 £iM /) for spin-flip states

where
M4 = Myg, c08(0up) + Mog, sin(fuyp)
M,y = Myg, cos(0up) — Mog, sin(0.p)
M, . = Mo,
Mo, = (Mo, cos ¢ — Moy, sin ¢) cos ¢
Mg, = (Moy sin ¢ — Mo, cos ¢) sin ¢
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Here, My, My,, My, are the x, y and z components of the magnetization vector given in the laboratory xyz frame
given by

Moy, = Mgy cos Oy cos gy

Moy = MO sin 9]\/[

My, = — Mgy cos Oy sin ¢y
and the magnetization angles 0, and ¢, are defined in the figure above.

The user input parameters are:

sld_MO Dy My

sld_mtheta | 6,/

sld_mphi dm

up_frac_i u; = (spin up)/(spin up + spin down) before the sample
up_frac_f | uy = (spin up)/(spin up + spin down) after the sample
up_angle Oup

Note: The values of the ‘up_frac_i’ and ‘up_frac_f’” must be in the range 0 to 1.
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Oriented particles

With two dimensional small angle diffraction data sasmodels will calculate scattering from oriented particles,
applicable for example to shear flow or orientation in a magnetic field.

In general we first need to define the reference orientation of the particle’s a-b-c axes with respect to the incoming
neutron or X-ray beam. This is done using three angles: € and ¢ define the orientation of the c-axis of the particle,
and angle W is defined as the orientation of the major axis of the particle cross section with respect to its starting
position along the beam direction (or equivalently, as rotation about the c axis). There is an unavoidable ambiguity
when c is aligned with z in that ¢ and ¥ both serve to rotate the particle about ¢, but this symmetry is destroyed
when 6 is not a multiple of 180.

The figures below are for an elliptical cross section cylinder, but may be applied analogously to other shapes of
particle.

Note: It is very important to note that these angles, in particular 6 and ¢, are NOT in general the same as the
0 and ¢ appearing in equations for the scattering form factor which gives the scattered intensity or indeed in the
equation for scattering vector Q. The 6 rotation must be applied before the ¢ rotation, else there is an ambiguity.

Having established the mean direction of the particle (the view) we can then apply angular orientation distributions
(jitter). This is done by a numerical integration over a range of angles in a similar way to particle size dispersity.
The orientation dispersity is defined with respect to the a-b-c axes of the particle, with roll angle U about the
c-axis, yaw angle 6 about the b-axis and pitch angle ¢ about the a-axis.

You can explore the view and jitter angles interactively using sasmodels. jitter.run (). Enter the follow-
ing into the python interpreter:

from sasmodels import jitter
jitter.run()
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Fig. 1.134: Definition of angles for oriented elliptical cylinder, where axis_ratio b/a is shown >1. Note that rotation
6, initially in the z-z plane, is carried out first, then rotation ¢ about the z-axis, finally rotation W is around the
axis of the cylinder. The neutron or X-ray beam is along the —z axis.
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Fig. 1.135: Some examples of the orientation angles for an elliptical cylinder, with ¥ = 0.
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More formally, starting with axes a-b-c of the particle aligned with axes z-y-z of the laboratory frame, the orien-
tation dispersity is applied first, using the Tait-Bryan z-y’-2" convention with angles A¢-Af-AW. The reference
orientation then follows, using the Euler angles z-y’-z"" with angles ¢-0-W. This is implemented using rotation
matrices as

R= Rz (¢) Ry (9) Rz(\Ij) Rx(A¢) Ry(Ae) Rz (A\I’)
To transform detector (¢, g,) values into (g, ¢, g.) for the shape in its canonical orientation, use

(90> @0: )" = R (g2, 9y, 01"
The inverse rotation is easily calculated by rotating the opposite directions in the reverse order, so
R™!' = R.(—AU) Ry (—A0) Ry(—Ap) R.(—V) Ry(—0) R.(—)

The 6 and ¢ orientation parameters for the cylinder only appear when fitting 2d data. On introducing “Orientational
Distribution” in the angles, “distribution of theta” and “distribution of phi” parameters will appear. These are
actually rotations about the axes d; and - of the cylinder, which correspond to the b and a axes of the cylinder
cross section. (When 6 = ¢ = 0 these are parallel to the Y and X axes of the instrument.) The third orientation
distribution, in W, is about the c axis of the particle. Some experimentation may be required to understand the
2d patterns fully. A number of different shapes of distribution are available, as described for size dispersity, see
Polydispersity & Orientational Distributions.

Given that the angular dispersion distribution is defined in cartesian space, over a cube defined by
[—Af0, Af] X [—A¢, Ag] x [-AT, AT]

but the orientation is defined over a sphere, we are left with a map projection problem, with different tradeoffs
depending on how values in A and A¢ are translated into latitude/longitude on the sphere.

Sasmodels is using the equirectangular projection. In this projection, square patches in angular dispersity become
wedge-shaped patches on the sphere. To correct for the changing point density, there is a scale factor of sin(A6)
that applies to each point in the integral. This is not enough, though. Consider a shape which is tumbling freely
around the b axis, with Af uniform in [—180, 180]. At 90, all points in A¢ map to the pole, so the jitter will
have a distinct angular preference. If the spin axis is along the beam (which will be the case for § = 90 and
U = 90) the scattering pattern should be circularly symmetric, but it will go to zero at ¢, = 0 due to the sin(A#)
correction. This problem does not appear for a shape that is tumbling freely around the a axis, with A¢ uniform
in [—180, 180], so swap the a and b axes so Af < A¢ and adjust ¥ by 90. This works with the current sasmodels
shapes due to symmetry.

Alternative projections were considered. The sinusoidal projection works by scaling A¢ as A6 increases, and
dropping those points outside [—180, 180]. The distortions are a little less for middle ranges of Ad, but they are
still severe for large Af and the model is much harder to explain. The azimuthal equidistance projection also
improves on the equirectangular projection by extending the range of reasonable values for the Af range, with
A¢ forming a wedge that cuts to the opposite side of the sphere rather than cutting to the pole. This projection has
the nice property that distance from the center are preserved, and that Af and A¢ act the same. The azimuthal
equal area projection is like the azimuthal equidistance projection, but it preserves area instead of distance. It also
has the same behaviour for Af and A¢. The Guyou projection has an excellent balance with reasonable distortion
in both A# and A, as well as preserving small patches. However, it requires considerably more computational
overhead, and we have not yet derived the formula for the distortion correction, measuring the degree of stretch at
the point (A6, A¢) on the map.

Note: Note that the form factors for oriented particles are performing numerical integrations over one or more
variables, so care should be taken, especially with very large particles or more extreme aspect ratios. In such
cases results may not be accurate, particularly at very high Q, unless the model has been specifically coded to use
limiting forms of the scattering equations.

For best numerical results keep the 6 distribution narrower than the ¢ distribution. Thus for asymmetric particles,
such as elliptical_cylinder, you may need to reorder the sizes of the three axes to acheive the desired result. This
is due to the issues of mapping a rectanglar distribution onto the surface of a sphere.
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Users can experiment with the values of Npts and Nsigs, the number of steps used in the integration and the
range spanned in number of standard deviations. The standard deviation is entered in units of degrees. For
a “rectangular” distribution the full width should be iﬂS) ~ 1.73 standard deviations. The new “uniform”
distribution avoids this by letting you directly specify the half width.

The angular distributions may be truncated outside of the range -180 to +180 degrees, so beware of using saying a
broad Gaussian distribution with large value of Nsigs, as the array of Npts may be truncated to many fewer points
than would give a good integration,as well as becoming rather meaningless. (At some point in the future the actual
dispersion arrays may be made available to the user for inspection.)

Some more detailed technical notes are provided in the developer section of this manual Orientation and Numeri-
cal Integration .

This definition of orientation is new to SasView 4.2. In earlier versions, the orientation distribution appeared as a
distribution of view angles. This led to strange effects when ¢ was aligned with z, where changes to the ¢ angle
served only to rotate the shape about c, rather than having a consistent interpretation as the pitch of the shape
relative to the flow field defining the reference orientation. Prior to SasView 4.1, the reference orientation was
defined using a Tait-Bryan convention, making it difficult to control. Now, rotation in # modifies the spacings in
the refraction pattern, and rotation in ¢ rotates it in the detector plane.
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Optimizer Selection

Bumps has a number of different optimizers available, each with its own control parameters:
* Levenberg-Marquardt
* Nelder-Mead Simplex
e DREAM
* Differential Evolution
* Quasi-Newton BFGS
* Random Lines [experimental]
* Particle Swarm [experimental]
e Parallel Tempering [experimental]

In general there is a trade-off between convergence rate and robustness, with the fastest algorithms most likely to
find a local minimum rather than a global minimum. The gradient descent algorithms (Levenberg-Marquardt,
Quasi-Newton BFGS) tend to be fast but they will find local minima only, while the population algorithms
(DREAM, Differential Evolution) are more robust and likely slower. Nelder-Mead Simplex is somewhere between,
with a small population keeping the search local but more robust than the gradient descent algorithms.

Each algorithm has its own set of control parameters for adjusting the search process and the stopping conditions.
The same option may mean slightly different things to different optimizers. The bumps package provides a dialog
box for selecting the optimizer and its options when running the fit wx application. This only includes the common
options for the most useful optimizers. For full control, the fit will need to be run from the command line interface
or through a python script.

For parameter uncertainty, most algorithms use the covariance matrix at the optimum to estimate an uncertainty
ellipse. This is okay for a preliminary analysis, but only works reliably for weakly correlated parameters. For full
uncertainty analysis, DREAM uses a random walk to explore the parameter space near the minimum, showing pair-
wise correlations amongst the parameter values. In order for DREAM to return the correct uncertainy, the function
to be optimized should be a conditional probability density, with nllf as the negative log likelihood function of
seeing point x in the parameter space. Other functions can be fitted, but uncertainty estimates will be meaningless.
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Most algorithms have been adapted to run in parallel at least to some degree. The implementation is not heavily
tuned, either in terms of minimizing the overhead per function evaluation or for distributing the problem across
multiple processors. If the theory function is implemented in parallel, then the optimizer should be run in serial.
Mixed mode is also possible when running on a cluster with a multi-threaded theory function. In this case, only
one theory function will be evaluated on each cluster node, but the optimizer will distribute the parameters values
to the cluster nodes in parallel. Do not run serial algorithms (Levenberg-Marquardt, Quasi-Newton BFGS) on a
cluster.

We have included a number of optimizers in Bumps that did not perform particularly well on our problem sets.
However, they may be perfect for your problem, so we have left them in the package for you to explore. They are
not available in the GUI selection.

Levenberg-Marquardt

- b

Fit Cantral | &2 |

Fit Algonthms
DREAM ' Differential Evolution

@ Levenberg-Marquardt ) Melder-Mead Simplex

0 Quasi-Mewton BFGS

Levenberg-Marquardt Fitting Parameters

Steps: L0040
fix) tolerance:  L5e-08

¥ tolerance: L5e-08

Reset | | Ok | | Cancel

The Levenberg-Marquardt algorithm has been the standard method for non-linear data fitting. As a gradient
descent trust region method, it starts at the initial value of the function and steps in the direction of the derivative
until it reaches the minimum. Set up as an explicit minimization of the sum of square differences between theory
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and model, it uses a numerical approximation of the Jacobian matrix to set the step direction and an adaptive
algorithm to set the size of the trust region.

When to use

Use this method when you have a reasonable fit near the minimum, and you want to get the best possible value.
This can then be used as the starting point for uncertainty analysis using DREAM. This method requires that the
problem definition includes a residuals method, but this should always be true when fitting data.

When modeling the results of an experiment, the best fit value is an accident of the measurement. Redo the
same measurement, and the slightly different values you measure will lead to a different best fit. The important
quantity to report is the credible interval covering 68% (1-0) or 95% (2-0) of the range of parameter values that
are somewhat consistent with the data.

This method uses Imfit from scipy, and does not run in parallel.

Options

Steps is the number of gradient steps to take. Each step requires a calculation of the Jacobian matrix to determine
the direction. This needs 2mn function evaluations, where n is the number of parameters and each function is
evaluated and m data points (assuming center point formula for finite difference estimate of the derivative). The
resulting linear equation is then solved, but for small n and expensive function evaluation this overhead can be
ignored. Use ——steps=n from the command line.

fi(x) tolerance and x tolerance are used to determine when the fit has reached the point where no significant
improvement is expected. If the function value does not improve significantly within the step, or the step is too
short, then the fit will terminate. Use ——ftol=v and ——xtol=v from the command line.

From the command line, ——starts=n will automatically restart the algorithm after it has converged so that a
slightly better value can be found. If —~—keep_best is included then restart will use a value near the minimum,
otherwise it will restart the fit from a random point in the parameter space.

Use ——fit=1m to select the Levenberg-Marquardt fitter from the command line.
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Nelder-Mead Simplex

Fit Cantral @

Fit Algornthms
DREAM Differential Evalution
Levenberg-Marquardt @ Melder-Mead Simplex

Cuasi-Mewton BFGS

Melder-MMead Simplex Friting Parameters

Steps: L0010
Starts: L
simplexracius: 10,15
x tolerance: Le-06

fiud tolerance:  Le-08

Feset | | Ok | | Cancel

The Nelder-Mead downhill simplex algorithm is a robust optimizer which does not require the function to be
continuous or differentiable. It uses the relative values of the function at the corners of a simplex (an n-dimensional
triangle) to decide which points of the simplex to update. It will take the worst value and try moving it inward
or outward, or reflect it through the centroid of the remaining values stopping if it finds a better value. If none of
these values are better, then it will shrink the simplex and start again. The name amoeba comes from the book
Numerical Recipes [Press1992] wherein they describe the search as acting like an amoeba, squeezing through
narrow valleys as it makes its way down to the minimum.

When to use

Use this method as a first fit to your model. If your fitting function is well behaved with few local minima this
will give a quick estimate of the model, and help you decide if the model needs to be refined. If your function is
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poorly behaved, you will need to select a good initial value before fitting, or use a more robust method such as
Differential Evolution or DREAM.

The uncertainty reported comes from a numerical derivative estimate at the minimum.

This method requires a series of function updates, and does not benefit much from running in parallel.

Options

Steps is the simplex update iterations to perform. Most updates require one or two function evaluations, but
shrinking the simplex evaluates every value in the simplex. Use ——steps=n from the command line.

Starts tells the optimizer to restart a given number of times. Each time it restarts it uses a random starting point.
Use -—starts=n from the command line.

Simplex radius is the initial size of the simplex, as a portion of the bounds defining the parameter space. If a
parameter is unbounded, then the radius will be treated as a portion of the parameter value. Use ——radius=n
from the command line.

x tolerance and f(x) tolerance are used to determine when the fit has reached the point where no significant
improvement is expected. If the simplex is tiny (that is, the corners are close to each other) and flat (that is, the
values at the corners are close to each other), then the fit will terminate. Use ——xtol=v and ——ftol=v from
the command line.

From the command line, use ——keep_best so that restarts are centered on a value near the minimum rather than
restarting from a random point within the parameter bounds.

Use ——fit=amoeba to select the Nelder-Mead simplex fitter from the command line.
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Quasi-Newton BFGS

Fit Cantral @

Fit Algornthms
DREAM Differential Evalution
Levenberg-Marquardt Melder-Mead Simplex

@ Quasi-Mewton BFGS

CQuasi-Mewton BFGS Fitting Parameters

Steps: 3001
Starts: L
fiud tolerance:  le-0@

x talerance: le-12

Feset | | Ok | | Cancel

Broyden-Fletcher-Goldfarb-Shanno is a gradient descent method which uses the gradient to determine the step
direction and an approximation of the Hessian matrix to estimate the curvature and guess a step size. The step is
further refined with a one-dimensional search in the direction of the gradient.

When to use

Like Levenberg-Marquardt, this method converges quickly to the minimum. It does not assume that the problem
is in the form of a sum of squares and does not require a residuals method.

The n partial derivatives are computed in parallel.
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Options

Steps is the number of gradient steps to take. Each step requires a calculation of the Jacobian matrix to determine
the direction. This needs 2mn function evaluations, where n is the number of parameters and each function is
evaluated and m data points (assuming center point formula for finite difference estimate of the derivative). The
resulting linear equation is then solved, but for small n and expensive function evaluation this overhead can be
ignored. Use ——steps=n from the command line.

Starts tells the optimizer to restart a given number of times. Each time it restarts it uses a random starting point.
Use ——starts=n from the command line.

f(x) tolerance and x tolerance are used to determine when the fit has reached the point where no significant
improvement is expected. If the function is small or the step is too short then the fit will terminate. Use ——ftol=v
and --xtol=v from the command line.

From the command line, ——keep_best uses a value near the previous minimum when restarting instead of
using a random value within the parameter bounds.

Use ——fit=newton to select BFGS from the commandline.
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References

Differential Evolution

Fit Cantral @

Fit Algonthms

DREAM @ Differential Evolution
Levenberg-Marquardt Melder-Mead Simplex

Cluasi-Mewton BFGS

Differential Evolution Fitting Parameters

Steps: L0049
Population: 10
Crossover ratio: 0.9
Scale: 2.0
fiud tolerance: L=-08

x tolerance: Le-i

Reset | | Ok | | Cancel

Differential evolution is a population based algorithm which uses differences between points as a guide to selecting
new points. For each member of the population a pair of points is chosen at random, and a difference vector is
computed. This vector is scaled, and a random subset of its components are added to the current point based on
crossover ratio. This new point is evaluated, and if its value is lower than the current point, it replaces it in the
population. There are many variations available within DE that have not been exposed in Bumps. Interested users
can modify bumps.fitters.DEFit and experiment with different crossover and mutation algorithms, and
perhaps add them as command line options.

Differential evolution is a robust directed search strategy. Early in the search, when the population is disperse, the
difference vectors are large and the search remains broad. As the search progresses, more of the population goes
into the valleys and eventually all the points end up in local minima. Now the differences between random pairs
will often be small and the search will become more localized.

The population is initialized according to the prior probability distribution for each each parameter. That is, if the
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parameter is bounded, it will use a uniform random number generate within the bounds. If it is unbounded, it will
use a uniform value in [0,1]. If the parameter corresponds to the result of a previous measurement with mean p
and standard deviation o, then the initial values will be pulled from a gaussian random number generator.

When to use

Convergence with differential evolution will be slower, but more robust.

Each update will evaluate k points in parallel, where k is the size of the population.

Options

Steps is the number of iterations. Each step updates each member of the population. The population size scales
with the number of fitted parameters. Use ——steps=n from the command line.

Population determines the size of the population. The number of individuals, k, is equal to the number of fitted
parameters times the population scale factor. Use ——pop=k from the command line.

Crossover ratio determines what proportion of the dimensions to update at each step. Smaller values will likely
lead to slower convergence, but more robust results. Values must be between 0 and 1. Use ——CR=v from the
command line.

Scale determines how much to scale each difference vector before adding it to the candidate point. The selected
mutation algorithm chooses a scale factor uniformly in [0, F']. Use ——F=v from the command line.

fi(x) tolerance and x tolerance are used to determine when the fit has reached the point where no significant
improvement is expected. If the population is flat (that is, the minimum and maximum values are within tolerance)
and tiny (that is, all the points are close to each other) then the fit will terminate. Use ftol=v and xt ol=v from
the command line.

Use ——fit=de to select diffrential evolution from the commandline.
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References

DREAM

Fit Cantral @

Fit Algarthms

@ DREANM Differential Evalution
Levenberg-Marquardt Melder-tead Simplex

Quasi-Mewton BFGS

DREAM Fitting Parameters

Samples: 10004
Burn-in Steps: 100

Population: 10

Initializer: eps -
Thinning: 1
Steps: 0

Feset | | Ok | | Cancel

DREAM is a population based algorithm like differential evolution, but instead of only keeping individuals which
improve each generation, it will sometimes keep individuals which get worse. Although it is not fast and does
not give the very best value for the function, we have found it to be a robust fitting engine which will give a good
value given enough time.

The progress of each individual in the population from generation to generation can considered a Markov chain,
whose transition probability is equal to the probability of taking the step times the probability that it keeps the step
based on the difference in value between the points. By including a purely random stepper with some probability,
the detailed balance condition is preserved, and the Markov chain converges onto the underlying equilibrium
distribution. If the theory function represents the conditional probability of selecting each point in the parameter
space, then the resulting chain is a random draw from the posterior distribution.

This means that the DREAM algorithm can be used to determine the parameter uncertainties. Unlike the hessian
estimate at the minimum that is used to report uncertainties from the other fitters, the resulting uncertainty need not
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gaussian. Indeed, the resulting distribution can even be multi-modal. Fits to measured data using theory functions
that have symmetric solutions have shown all equivalent solutions with approximately equal probability.

When to use

Use DREAM when you need a robust fitting algorithm. It takes longer but it does an excellent job of exploring
different minima and getting close to the global optimum.

Use DREAM when you want a detailed analysis of the parameter uncertainty.

Like differential evolution, DREAM will evaluate k points in parallel, where k is the size of the population.

Options

Samples is the number of points to be drawn from the Markov chain. To estimate the 68% interval to two digits
of precision, at least 1e5 (or 100,000) samples are needed. For the 95% interval, 1e6 (or 1,000,000) samples
are needed. The default le4 samples gives a rough approximation of the uncertainty relatively quickly. Use
——samples=n from the command line.

Burn-in Steps is the number of iterations to required for the Markov chain to converge to the equilibrium distri-
bution. If the fit ends early, the tail of the burn will be saved to the start of the steps. Use ——burn=n from the
command line.

Population determines the size of the population. The number of individuals, &, is equal to the number of fitted
parameters times the population scale factor. Use ——pop=Xk from the command line.

Initializer determines how the population will be initialized. The options are as follows:

eps (epsilon ball), in which the entire initial population is chosen at random from within a tiny hyper-
sphere centered about the initial point

Ihs (latin hypersquare), which chops the bounds within each dimension in &k equal sized chunks where
k is the size of the population and makes sure that each parameter has at least one value within each
chunk across the population.

cov (covariance matrix), in which the uncertainty is estimated using the covariance matrix at the initial
point, and points are selected at random from the corresponding gaussian ellipsoid

random (uniform random), in which the points are selected at random within the bounds of the pa-
rameters

Use ——init=type from the command line.

Thinning is the amount of thinning to use when collecting the population. If the fit is somewhat stuck, with most
steps not improving the fit, then you will need to thin the population to get proper statistics. Use ——thin=k from
the command line.

Calculate entropy, if true, computes the entropy for the fit. This is an estimate of the amount of information in the
data. Use ——entropy from the command line.

Steps, if not zero, determines the number of iterations to use for drawing samples after burn in. Each iteration
updates the full population, which is (population x number of fitted parameters) points. This option is available
for compatibility; it is more useful to set the number of samples directly. Use ——steps=n from the command
line.

Use ——fit=dream to select DREAM from the commandline.

Output

DREAM produces a number of different outputs, and there are a number of things to check before using its
reported uncertainty values. The main goal of selecting ——burn=n is to wait long enough to reach the equilibrium
distribution.
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Fig. 1.136: This DREAM fit is incomplete, as can be seen on all four plots. The Convergence plot is still decreas-
ing, Parameter Trace plot does not show random mixing of Markov chain values, the Correlations plots are fuzzy
and mostly empty, the Uncertainty plot shows black histograms (indicating that there are a few stray values far
away from the best) and green maximum likelihood spikes not matching the histogram (indicating that the region
around the best value has not been adequately explored).
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Fig. 1.137: This DREAM fit completed successfully. The Convergence plot is flat, the Parameter Trace plot is
flat and messy, the Correlateions plots show nice blobs (and a bit of correlation between the M1.radius parameter
and the M 1.radius.width parameter), and the uncertainty plots show a narrow range of -log(P) values in the mostly
brown histograms and a good match to the green constrained maximum likelihood line.
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For each parameter in the fit, DREAM finds the mean, median and best value, as well as the 68% and 95% credible
intervals. The mean value is defined as [ zP(x)dz, which is just the expected value of the probability distribution
for the parameter. The median value is the 50% point in the probability distribution, and the best value is the
maximum likelihood value seen in the random walk. The credible intervals are the central intervals which capture
68% and 95% of the parameter values respectively. You need approximately 100,000 samples to get two digits of
precision on the 68% interval, and 1,000,000 samples for the 95% interval.

Table 1.1: Example fit output

# | Parameter mean median | best [ 68% interval] [ 95% interval]
1 | Ml.background | 0.059925(41) | 0.059924 | 0.059922 | [0.05988 0.05997] | [0.05985 0.06000]
2 | Ml.radius 2345.3(15) 2345.234 | 2345.174 | [2343.83 2346.74] | [2342.36 2348.29]
3 | Ml.radius.width | 0.00775(41) | 0.00774 | 0.00777 | [0.0074 0.0081] [ 0.0070 0.0086]
4 | Ml.scale 0.21722(20) 0.217218 | 0.217244 | [0.21702 0.21743] | [0.21681 0.21761]

The Convergence plot shows the range of x? values in the population for each iteration. The band shows the
68% of values around the median, and the solid line shows the minimum value. If the distribution has reached
equilibrium, then convergence graph should be roughly flat, with little change in the minimum value throughout
the graph. If there is no convergence, then the remaining plots don’t mean much.

The Correlations plot shows cross correlation between each pair of parameters. If the parameters are completely
uncorrelated then the boxes should contain circles. Diagonals indicate strong correlation. Square blocks indicate
that the fit is not sensitive to one of the parameters. The range plotted on the correlation plot is determined by
the 95% interval of the data. The individual correlation plots are too small to show the range of values for the
parameters. These can instead be read from the Uncertainty plot for each parameter, which covers the same range
of values and indicates 68% and 95% intervals. If there are some chains that are wandering around away from the
minimum, then the plot will look fuzzy, and not have a nice blob in the center. If a correlation plot has multiple
blobs, then there are multiple minima in your problem space, usually because there are symmetries in the problem
definition. For example, a model fitting 2 + a? will have identical solutions for + a.

The Uncertainty plot shows histograms for each fitted parameter generated from the values for that parameter
across all chains. Within each histogram bar the values are sorted and displayed as a gradient from black to
copper, with black values having the lowest x? and copper values having the highest. The resulting histogram
should be dark brown, with a black hump in the center and light brown tips. If there are large lumps of light
brown, or excessive black then its likely that the optimizer did not converge. The green line over the histogram
shows the best value seen within each histogram bin (the maximum likelihood given p;, == z). With enough
samples and proper convergence, it should roughly follow the outline of the histogram. The yellow band in the
center of the plot represents the 68% interval for the data. The histogram cuts off at 95%. These values along with
the median are shown as labels along the x axis. The green asterisk represents the best value, the green E the mean
value and the vertical green line the median value. If the fit is not sensitive to a parameter, or if two parameters
are strongly correlated, the parameter histogram will show a box rather than a hump. Spiky shapes (either in the
histogram or the maximum likelihood line) indicate lack of convergence or maybe not enough steps. A chopped
histograms indicates that the range for that parameter is too small.

The Parameter Trace plot is diagnostic for models which have poor mixing. In this cases no matter how the
parameter values are changing, they are landing on much worse values for the x2. This can happen if the problem
is highly constrained with many tight and twisty values.

The Data and Theory plot should show theory and data lining up pretty well, with the theory overlaying about
2/3 of the error bars on the data (1-0 = 68%). The Residuals plot shows the difference between theory and data
divided by uncertainty. The residuals should be 2/3 within [-1, 1], They should not show any structure, such as
humps where the theory misses the data for long stretches. This indicates some feature missing from the model,
or a lack of convergence to the best model.

If entropy is requested, then bumps will show the total number of bits of information in the fit. This derives from
the entropy term:

Using entropy and simulation we hope to be able to make experiment planning decisions in a way that maximizes
information, by estimating whether it is better to measure more precisely or to measure different but related values
and fit them with shared parameters.
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References
Particle Swarm

Inspired by bird flocking behaviour, the particle swarm algorithm is a population-based method which updates an
individual according to its momentum and a force toward the current best fit parameter values. We did not explore
variations of this algorithm in any detail.

When to use

Particle swarm performed well enough in our low dimensional test problems, but made little progress when more
fit parameters were added.

The population updates can run in parallel, but the tiny population size limits the amount of parallelism.

Options

——steps=n is the number of iterations. Each step updates each member of the population. The population size
scales with the number of fitted parameters.

——pop=k determines the size of the population. The number of individuals, k, is equal to the number of fitted
parameters times the population scale factor. The default scale factor is 1.

Use ——fit=ps to select particle swarm from the commandline.

Add a few more lines

References
Random Lines

Most of the population based algorithms ignore the value of the function when choosing the points in the next
iteration. Random lines is a new style of algorithm which fits a quadratic model to a selection from the population,
and uses that model to propose a new point in the next generation of the population. The hope is that the method
will inherit the robustness of the population based algorithms as well as the rapid convergence of the newton
descent algorithms.

When to use

Random lines works very well for some of our test problems, showing rapid convergence to the optimum, but on
other problems it makes very little progress.

The population updates can run in parallel.

Options

—-—steps=n is the number of iterations. Each step updates each member of the population. The population size
scales with the number of fitted parameters.

——pop=k determines the size of the population. The number of individuals, k, is equal to the number of fitted
parameters times the population scale factor. The default scale factor is 0.5.

—-—CR=v is the crossover ratio, determining what proportion of the dimensions to update at each step. Values must
be between 0 and 1.
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—-—starts=n tells the optimizer to restart a given number of times. Each time it restarts it uses a random starting
point.

-—keep_best uses a value near the previous minimum when restarting instead of using a random value within
the parameter bounds. This option is not available in the options dialog.

Use ——fit=rl to select random lines from the commandline.

References
Parallel Tempering

Parallel tempering is an MCMC algorithm for uncertainty analysis. This version runs at multiple temperatures
simultaneously, with chains at high temperature able to more easily jump between minima and chains at low
temperature to fully explore the minima. Like DREAM it has a differential evolution stepper, but this version uses
the chain history as the population rather than maintaining a population at each temperature.

This is an experimental algorithm which does not yet perform well.

When to use

When complete, parallel tempering should be used for problems with widely spaced local minima which dream
cannot fit.

Options

—-—steps=n is the number of iterations to include in the Markov chain. Each iteration updates the full population.
The population size scales with the number of fitted parameters.

——burn=n is the number of iterations to required for the Markov chain to converge to the equilibrium distribution.
If the fit ends early, the tail of the burn will be saved to the start of the steps.

——CR=v is the differential evolution crossover ratio to use when computing step size and direction. Use a small
value to step through the dimensions one at a time, or a large value to step through all at once.

-nT=k, -Tmin=v and ——Tmax=v specify a log-spaced initial distribution of temperatures. The default is 25
points between 0.1 and 10. DREAM runs at a fixed temperature of 1.0.

Use ——fit=pt to select parallel tempering from the commandline.

References

SANS to SESANS conversion

The conversion from SANS into SESANS in absolute units is a simple Hankel transformation when all the small-
angle scattered neutrons are detected. First we calculate the Hankel transform including the absolute intensities
by

6)=2n [~ (@05 Qe

in which Jy is the zeroth order Bessel function, ¢ the spin-echo length, ) the wave vector transfer and %(Q) the
scattering cross section in absolute units.

Out of necessity, a 1-dimensional numerical integral approximates the exact Hankel transform. The upper bound
of the numerical integral is ),,,4,, Which is calculated from the wavelength and the instrument’s maximum ac-
ceptance angle, both of which are included in the file. While the true Hankel transform has a lower bound of
zero, most scattering models are undefined at :math: Q=0, so the integral requires an effective lower bound. The
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lower bound of the integral is Q.in = 0.1 X 27/ R0z, in which Ry,4, is the maximum length scale probed by
the instrument multiplied by the number of data points. This lower bound is the minimum expected Q value for
the given length scale multiplied by a constant. The constant, 0.1, was chosen empirically by integrating multi-
ple curves and finding where the value at which the integral was stable. A constant value of 0.3 gave numerical
stability to the integral, so a factor of three safety margin was included to give the final value of 0.1.

From the equation above we can calculate the polarisation that we measure in a SESANS experiment:
P(6) = t(3)"(C®)-6(0)

in which ¢ is the thickness of the sample and ) is the wavelength of the neutrons.

Fitting SESANS Data

Note: A proper installation of the developers setup of SasView (http://trac.sasview.org/wiki/AnacondaSetup) is a
prerequisite for using these instructions.

It is possible to fit SESANS measurements from the command line in Python.

Simple Fits

In the folder sasmodels/example the file sesans_sphere_2micron.py gives an example of how to fit a shape to a
measurement.

The command:

>python fit_sesans.py sesans_sphere_2micron.py

then results in a GUI from which you can control the fit.
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Model Parameter Value Minimum Maximu... Fit?

|

M0:sld MO:sld 0.0 No
M0:sld_solvent M0:sld_solvent 0.0 No
background background 0.0 No
mphi:sid mphi:sid 0.0 No
mphi:sld_solvent mphi:sld_solvent 0.0 No
mtheta:sld mtheta:sid 0.0 No
mthetasld_solvent  mtheta:sld_solvent 0.0 No
phi phi 0.0855  0.001 0.5 Yes
radius radius 10000.0 100 100000 Yes
radius_pd radius_pd 0.0 MNo
radius_pd_n radius_pd_n 350 No
radius_pd_nsigma  radius_pd_nsigma 3.0 MNo
scale (phi * (1 - phi)) 0.07819

sid sld 141 No
sld_solvent sld_solvent 27 No
upangle up:angle 0.0 No
up:frac_f up:frac_f 0.0 No
up:frac_i up:frac_i 0.0 No

| d

All the parameters and names in sesans_sphere_2micron.py (shown below) can be adjusted to fit your own prob-
lem:

mmn

This is a data file wused to load in sesans data and fit it using the bumps engine
mrrn

from bumps.names import x
import sesansfit

# Enter the model name to use
model_name = "sphere"

# DO NOT MODIFY THIS LINE
model = sesansfit.get_bumps_model (model_name)

# Enter any custom parameters

# name = Parameter (initial_value, name='name')

phi = Parameter (0.0855, name='phi')

# Add the parameters to this list that should be displayed in the fitting window
custom_params = {"phi" : phi}

# SESANS data file name
sesans_file = "spheresZmicron.ses"

# Initial parameter values (if other than defaults)

(continues on next page)
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(continued from previous page)

# "model_parameter_name" : value
initial_vals = {
"sld" : 1.41,
"radius" : 10000,
"sld_solvent" : 2.70,

# Ranges for parameters 1f other than default

# "model_parameter_name" : [min, max]
param_range = {
"phi" : [0.001, 0.5],
"radius" : [100, 100000]
}
# Constraints
# model.param_name = f (other params)
# EXAMPLE: model.scale = model.radius+model.radiusx(l - phi) - where radius
# and scale are model functions and phi is a custom parameter

model.scale = phix (1-phi)

# Send to the fitting engine

# DO NOT MODIFY THIS LINE

problem = sesansfit.sesans_fit (sesans_file, model, initial_vals, custom_params,
—param_range)

Incorporating a Structure Factor

An example of how to also include a structure factor can be seen in the following example taken from Washington
et al., Soft Matter, (2014), 10, 3016 (dx.doi.org/10.1039/C3SM53027B). These are time-of-flight measurements,

which is the reason that not the polarisation is plotted, but the log(fw . The sample is a dispersion of core-shell
colloids at a high volume fraction with hard sphere interactions.

The fit can be started by:

>python fit_sesans.py sesans_parameters_css—hs.py

This yields after the fitting:
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Model Parameter Value Minimum Maximu... Fit?
mtheta:sld_shell mtheta:sld_shell 0.0 No -
mthetasld_solvent  mtheta:sld_solvent 0.0 No
pen solvent penetration 1.0 0 1 Yes
phi phi 04996 0.2 0.5 Yes
radius radius 7875 500 3000 Yes
radius_pd radius_pd 0.0 No
radius_pd_n radius_pd_n 350 MNo
radius_pd_nsigma  radius_pd_nsigma 3.0 No
scale scale ((((1 - phi) MNo
sld_core sld_core 1.05 No
sld_shell sld_shell (((((2.88 %5 No
sld_solvent sld_solvent 2.88 No
thickness thickness 189.5 0 200 Yes
thickness_pd thickness_pd 0.0 No L
Start fitting operation Fit status: Complete
—

The code sesans_parameters_css-hs.py can then be used as a template for a fitting problem with a structure factor:

mmon

This is a data file used to load in sesans data and fit it using the bumps engine
mmn

from bumps.names import =«
import sesansfit

# Enter the model name to use
model_name = "core_shell_ spherexhardsphere"

# DO NOT MODIFY THIS LINE
model = sesansfit.get_bumps_model (model_name)

# Enter any custom parameters

phi = Parameter (0.45, name='phi')

pen = Parameter (0.95, name='solvent penetration')
custom_params = {"phi" : phi, "pen" : pen}

# SESANS data file
sesans_file = "core_shell.ses"

# Initial parameter values (if other than defaults)

initial_vals = {
"sld_core" : 1.05,
"sld_shell" : 2.88xpen-0.05% (1l-pen),
"sld_solvent" : 2.88,
"radius" : 730,
"thickness" : 20,
"volfraction" : phi,

(continues on next page)
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(continued from previous page)

"scale" : (l-phi)
}

# Ranges for parameters 1if other than default

param_range = {
"phi" : [0.2, 0.57,
"pen" : [0,1],
"radius" : [500, 3000],
"thickness" : [0,200]
}
# Constraints
# model.param_name = f (other params)
# EXAMPLE: model.scale = model.radius*model.radiusx(l - phi) - where radius
# and scale are model functions and phi is a custom parameter

model.scale = phix (1-phi)
model.volfraction = phi
model.shell_sld = penx2.88

# Send to the fitting engine
problem = sesansfit.sesans_fit (sesans_file, model_name, initial_vals, custom_
—params, param_range)

Writing a Plugin Model

Overview

In addition to the models provided with the sasmodels package, you are free to create your own models.
Models can be of three types:

* A pure python model : Example - broadpeak.py

* A python model with embedded C : Example - sphere.py

* A python wrapper with separate C code : Example - cylinder.py, cylinder.c

When using SasView, plugin models should be saved to the SasView plugin_models folder
CA\Users\{username).sasview\plugin_models (on Windows) or /Users/{username}/.sasview\plugin_models
(on Mac). The next time SasView is started it will compile the plugin and add it to the list of Plugin Models in a
FitPage. Scripts can load the models from anywhere.

The built-in modules are available in the models subdirectory of the sasmodels package. For SasView on Windows,
these will be found in C:\Program Files (x86 \SasView\sasmodels-data\models. On Mac OSX, these will be within
the application bundle as /Applications/SasView 4.0.app/Contents/Resources/sasmodels-data/models.

Other models are available for download from the Model Marketplace. You can contribute your own models to
the Marketplace as well.

Create New Model Files

Copy the appropriate files to your plugin models directory (we recommend using the examples above as templates)
as mymodel.py (and mymodel.c, etc) as required, where “mymodel” is the name for the model you are creating.

Please follow these naming rules:
* No capitalization and thus no CamelCase
* If necessary use underscore to separate words (i.e. barbell not BarBell or broad_peak not BroadPeak)

¢ Do not include “model” in the name (i.e. barbell not BarBellModel)
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Edit New Model Files

Model Contents

The model interface definition is in the .py file. This file contains:
* a model name:

— this is the name string in the .py file
— titles should be:
— all in lower case
— without spaces (use underscores to separate words instead)
— without any capitalization or CamelCase
— without incorporating the word “model”

— examples: barbell not BarBell; broad_peak not BroadPeak; barbell not BarBellModel

a model title:
— this is the title string in the .py file

— this is a one or two line description of the model, which will appear at the start of the model
documentation and as a tooltip in the SasView GUI

* ashort description:
— this is the description string in the .py file

— this is a medium length description which appears when you click Description on the model
FitPage

* a parameter table:
— this will be auto-generated from the parameters in the .py file
¢ along description:

996699

— this is ReStructuredText enclosed between the r”*”” and *“*”” delimiters at the top of the .py file
— what you write here is abstracted into the SasView help documentation

— this is what other users will refer to when they want to know what your model does; so please be
helpful!

* a definition of the model:
— as part of the long description

« aformula defining the function the model calculates:
— as part of the long description

 an explanation of the parameters:
— as part of the long description

— explaining how the symbols in the formula map to the model parameters

a plot of the function, with a figure caption:

— this is automatically generated from your default parameters

at least one reference:
— as part of the long description
— specifying where the reader can obtain more information about the model

¢ the name of the author
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— as part of the long description
— the .py file should also contain a comment identifying who converted/created the model file

Models that do not conform to these requirements will never be incorporated into the built-in library.

Model Documentation

The .py file starts with an r (for raw) and three sets of quotes to start the doc string and ends with a second set of
three quotes. For example:

mwn
r

Definition

The 1D scattering intensity of the sphere is calculated in the following
way (Guinier, 1955)

math::

I(g) = \frac{\text{scale}}{V} \cdot \left/[
3V(\Delta\rho) \cdot \frac{\sin(qr) - gr\cos(qr))}{(qr)"3}
\right] "2 + \text{background}

where xscale* 1s a volume fraction, :math: V' 1is the volume of the scatterer,
:math: r° is the radius of the sphere and x*backgroundx 1is the background level.
*sld+ and xsld_solventx are the scattering length densities (SLDs) of the
scatterer and the solvent respectively, whose difference is :math: \Delta\rho'.

You can included figures in your documentation, as in the following
figure for the cylinder model.

figure:: img/cylinder_angle definition. jpg
Definition of the angles for oriented cylinders.

References

A Guinier, G Fournet, xSmall-Angle Scattering of X—-Rays+,
John Wiley and Sons, New York, (1955)

mwn

This is where the FULL documentation for the model goes (to be picked up by the automatic documentation
system). Although it feels odd, you should start the documentation immediately with the definition—the model
name, a brief description and the parameter table are automatically inserted above the definition, and the a plot of
the model is automatically inserted before the reference.

Figures can be included using the figure command, with the name of the .png file containing the figure and a
caption to appear below the figure. Figure numbers will be added automatically.

See this Sphinx cheat sheet for a quick guide to the documentation layout commands, or the Sphinx Documentation
for complete details.

The model should include a formula written using LaTeX markup. The example above uses the math command
to make a displayed equation. You can also use $formula$ for an inline formula. This is handy for defining the
relationship between the model parameters and formula variables, such as the phrase “$r$ is the radius” used
above. The live demo MathJax page http://www.mathjax.org/ is handy for checking that the equations will look
like you intend.

Math layout uses the amsmath package for aligning equations (see amsldoc.pdf on that page for complete doc-
umentation). You will automatically be in an aligned environment, with blank lines separating the lines of the
equation. Place an ampersand before the operator on which to align. For example:
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math::

x + y &= 1 \\
y &= x — 1

produces

z+y=1
y=x—1

If you need more control, use:

math::
rnowrap:

Model Definition

Following the documentation string, there are a series of definitions:

name = "sphere" # optional: defaults to the filename without .py
title = "Spheres with uniform scattering length density"
description = """\

P(q)=(scale/V)*[3V(sld-sld_solvent) * (sin(qr)-gr cos (qr))
/(qgr)”~3]1"2 + background
r: radius of sphere
V: The volume of the scatter
sld: the SLD of the sphere
sld_solvent: the SLD of the solvent

category = "shape:sphere"
single = True # optional: defaults to True
opencl = False # optional: defaults to False

structure_factor = False # optional: defaults to False

name = “mymodel” defines the name of the model that is shown to the user. If it is not provided it will use the
name of the model file. The name must be a valid variable name, starting with a letter and contains only letters,
numbers or underscore. Spaces, dashes, and other symbols are not permitted.

title = ‘“short description” is short description of the model which is included after the model name in the
automatically generated documentation. The title can also be used for a tooltip.

description = ‘““’*“doc string”*®’ is a longer description of the model. It shows up when you press the “Descrip-
tion” button of the SasView FitPage. It should give a brief description of the equation and the parameters without
the need to read the entire model documentation. The triple quotes allow you to write the description over multi-
ple lines. Keep the lines short since the GUI will wrap each one separately if they are too long. Make sure the
parameter names in the description match the model definition!

category = “shape:sphere” defines where the model will appear in the model documentation. In this example,
the model will appear alphabetically in the list of spheroid models in the Shape category.

single = True indicates that the model can be run using single precision floating point values. Set it to False if
the numerical calculation for the model is unstable, which is the case for about 20 of the built in models. It is
worthwhile modifying the calculation to support single precision, allowing models to run up to 10 times faster.
The section Test_Your_New_Model describes how to compare model values for single vs. double precision so you
can decide if you need to set single to False.
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opencl = False indicates that the model should not be run using OpenCL. This may be because the model definition
includes code that cannot be compiled for the GPU (for example, goto statements). It can also be used for large
models which can’t run on most GPUs. This flag has not been used on any of the built in models; models which
were failing were streamlined so this flag was not necessary.

structure_factor = True indicates that the model can be used as a structure factor to account for interactions
between particles. See Form_Factors for more details.

model_info = ... lets you define a model directly, for example, by loading and modifying existing models. This
is done implicitly by sasmodels.core.load_model_info (), which can create a mixture model from a
pair of existing models. For example:

from sasmodels.core import load_model_info
model_info = load_model_info('sphere+tcylinder')

See sasmodels.modelinfo.ModelInfo for details about the model attributes that are defined.

Model Parameters

Next comes the parameter table. For example:

# pylint: disable=bad-whitespace, line-too-long

# ["name", "units", default, [min, max], "type", "description"],
parameters = [

["s1ld", "le-6/Ang”2", 1, [-inf, inf], "sl1d", "Layer scattering,
—length density"],

["sld_solvent", "le-6/Ang”2", 6, [-inf, inf], "s1d", "Solvent scattering,
—length density"],

["radius", "Ang", 50, [0, inf], "volume", "Sphere radius"],

]

# pylint: enable=bad-whitespace, line-too-long

parameters = [[“name”, “units”, default, [min,max], ‘“type”, “tooltip’],...] defines the parameters that form
the model.

Note: The order of the parameters in the definition will be the order of the parameters in the user interface
and the order of the parameters in Iq(), Iqac(), Iqabc() and form_volume(). And scale and background
parameters are implicit to all models, so they do not need to be included in the parameter table.

* “name” is the name of the parameter shown on the FitPage.

— the name must be a valid variable name, starting with a letter and containing only letters, numbers and
underscore.

— parameter names should follow the mathematical convention; e.g., radius_core not core_radius, or
sld_solvent not solvent_sld.

— model parameter names should be consistent between different models, so sld_solvent, for example,
should have exactly the same name in every model.

— to see all the parameter names currently in use, type the following in the python shell/editor under the
Tools menu:

import sasmodels.list_pars
sasmodels.list_pars.list_pars/()

re-use as many as possible!!!

— use “name[n]” for multiplicity parameters, where n is the name of the parameter defining the number
of shells/layers/segments, etc.

* ‘“units” are displayed along with the parameter name

— every parameter should have units; use “None” if there are no units.

1.3. Fitting & Other Analyses 201



SasView Documentation, Release 4.2.2

— sld’s should be given in units of 1e-6/Ang”2, and not simply 1/Ang”2 to be consistent with the
builtin models. Adjust your formulas appropriately.

— fancy units markup is available for some units, including:

Ang, 1/Ang, 1/Ang”2, le-6/Ang”2, degrees, 1/cm, Ang/cm, g/cm”3, mg/m"2

— the list of units is defined in the variable RST_UNITS within sasmodels/generate.py
# new units can be added using the macros defined in doc/rst_prolog in the sasmodels source.

% units should be properly formatted using sub-/super-scripts and using negative exponents instead
of the / operator, though the unit name should use the / operator for consistency.

* please post a message to the SasView developers mailing list with your changes.
¢ default is the initial value for the parameter.

— the parameter default values are used to auto-generate a plot of the model function in the docu-
mentation.

* [min, max] are the lower and upper limits on the parameter.
— lower and upper limits can be any number, or -inf or inf.

— the limits will show up as the default limits for the fit making it easy, for example, to force the radius
to always be greater than zero.

— these are hard limits defining the valid range of parameter values; polydisperity distributions will be
truncated at the limits.

e “type” can be one of: “’, “sld”, “volume”, or “orientation”.

— “sld” parameters can have magnetic moments when fitting magnetic models; depending on the spin
polarization of the beam and the ¢ value being examined, the effective sld for that material will be
used to compute the scattered intensity.

— “volume” parameters are passed to Iq(), Iqac(), Iqabc() and form_volume(), and have polydispersity
loops generated automatically.

— “orientation” parameters are not passed, but instead are combined with orientation dispersity to trans-
late gx and gy to qa, gb and gc. These parameters should appear at the end of the table with the specific
names theta, phi and for asymmetric shapes psi, in that order.

Some models will have integer parameters, such as number of pearls in the pearl necklace model, or number of
shells in the multi-layer vesicle model. The optimizers in BUMPS treat all parameters as floating point numbers
which can take arbitrary values, even for integer parameters, so your model should round the incoming parameter
value to the nearest integer inside your model you should round to the nearest integer. In C code, you can do this
using:

static double

Ig(double g, ..., double fp_n, ...)
{
int n = (int) (fp_n + 0.5);
}
in python:
def Ig(g, ..., n, ...):
n = int (n+0.5)

Derivative based optimizers such as Levenberg-Marquardt will not work for integer parameters since the partial
derivative is always zero, but the remaining optimizers (DREAM, differential evolution, Nelder-Mead simplex)
will still function.
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Model Computation

Models can be defined as pure python models, or they can be a mixture of python and C models. C models are
run on the GPU if it is available, otherwise they are compiled and run on the CPU.

Models are defined by the scattering kernel, which takes a set of parameter values defining the shape, orientation
and material, and returns the expected scattering. Polydispersity and angular dispersion are defined by the com-
putational infrastructure. Any parameters defined as “volume” parameters are polydisperse, with polydispersity
defined in proportion to their value. “orientation” parameters use angular dispersion defined in degrees, and are
not relative to the current angle.

Based on a weighting function G(x) and a number of points n, the computed value is
_JG@I@)dr i, Gle)I(g,x)
JG@)V(x)de 3L, Gz:)V(xi)

That is, the individual models do not need to include polydispersity calculations, but instead rely on numerical
integration to compute the appropriately smeared pattern.

I(q)

Each .py file also contains a function:

def random() :

This function provides a model-specific random parameter set which shows model features in the USANS to
SANS range. For example, core-shell sphere sets the outer radius of the sphere logarithmically in /20, 20,000],
which sets the Q value for the transition from flat to falling. It then uses a beta distribution to set the percentage
of the shape which is shell, giving a preference for very thin or very thick shells (but never 0% or 100%). Using
-sets=10 in sascomp should show a reasonable variety of curves over the default sascomp q range. The parameter
set is returned as a dictionary of {parameter: value, ...}. Any model parameters not included in the dictionary
will default according to the code in the _randomize_one() function from sasmodels/compare.py.

Python Models

For pure python models, define the /g function:

import numpy as np
from numpy import cos, sin,

def Ig(qg, parl, par2, ...):

return I(q, parl, par2, ...)
Ig.vectorized = True
The parameters parl, par2, ... are the list of non-orientation parameters to the model in the order that they appear

in the parameter table. Note that the auto-generated model file uses x rather than g.

The .py file should import trigonometric and exponential functions from numpy rather than from math. This lets
us evaluate the model for the whole range of g values at once rather than looping over each g separately in python.
With q as a vector, you cannot use if statements, but must instead do tricks like

a = xxg* (g>0) + yxgx (g<=0)

or

a = np.empty_like(q)
index = g>0

al[index] = xxg[index]
a[~index] = y*g[~index]

which sets a to ¢ - x if q is positive or ¢ - y if ¢ is zero or negative. If you have not converted your function to use
q vectors, you can set the following and it will only receive one ¢ value at a time:
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Ig.vectorized = False

Return np.NaN if the parameters are not valid (e.g., cap_radius < radius in barbell). If I(q; pars) is NaN for any ¢,
then those parameters will be ignored, and not included in the calculation of the weighted polydispersity.

Models should define form_volume(parl, par2, ...) where the parameter list includes the volume parameters in
order. This is used for a weighted volume normalization so that scattering is on an absolute scale. If form_volume
is not defined, then the default form_volume = 1.0 will be used.

Embedded C Models

Like pure python models, inline C models need to define an Ig function:

Iq — nnwn
return I(gq, parl, par2, ...);

nun

This expands into the equivalent C code:

#include <math.h>
double Ig(double g, double parl, double par2, ...);
double Ig(double g, double parl, double par2, ...)
{

return I (g, parl, par2, ...);
}

form_volume defines the volume of the shape. As in python models, it includes only the volume parameters.

source=[‘fn.c’, ...] includes the listed C source files in the program before /g and form_volume are defined. This
allows you to extend the library of C functions available to your model.

c_code includes arbitrary C code into your kernel, which can be handy for defining helper functions for /g and
form_volume. Note that you can put the full function definition for Iq and form_volume (include function declara-
tion) into c_code as well, or put them into an external C file and add that file to the list of sources.

Models are defined using double precision declarations for the parameters and return values. When a model is
run using single precision or long double precision, each variable is converted to the target type, depending on the
precision requested.

Floating point constants must include the decimal point. This allows us to convert values such as 1.0 (double
precision) to 1.0f (single precision) so that expressions that use these values are not promoted to double precision
expressions. Some graphics card drivers are confused when functions that expect floating point values are passed
integers, such as 4*atan(1); it is safest to not use integers in floating point expressions. Even better, use the builtin
constant M_PI rather than 4*atan(1); it is faster and smaller!

The C model operates on a single ¢ value at a time. The code will be run in parallel across different g values,
either on the graphics card or the processor.

Rather than returning NAN from Iq, you must define the INVALID(v). The v parameter lets you access all the
parameters in the model using v.parl, v.par2, etc. For example:

#define INVALID(v) (v.bell_ radius < v.radius)

The INVALID define can go into Ig, or c_code, or an external C file listed in source.

Oriented Shapes

If the scattering is dependent on the orientation of the shape, then you will need to include orientation parameters
theta, phi and psi at the end of the parameter table. As described in the section Oriented particles, the individ-
ual (g, ¢,) points on the detector will be rotated into (gq, ¢, g.) points relative to the sample in its canonical
orientation with a-b-c aligned with z-y-z in the laboratory frame and beam travelling along —z.
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The oriented C model is called using Iqabc(qa, qb, qc, parl, par2, ...) where parl, etc. are the parameters to the
model. If the shape is rotationally symmetric about ¢ then psi is not needed, and the model is called as Igac(qab,
qc, parl, par2, ...). In either case, the orientation parameters are not included in the function call.

For 1D oriented shapes, an integral over all angles is usually needed for the /g function. Given symmetry and the

substitution u = cos(a), du = — sin(«) do this becomes
1 pi/2 5 .
I(q) = — / F(qa, g, qc)” sin(a) df da
4m —m/2 —pi

pi/2
— / F?sin(a) df do

//m —F?dpdu
7/0/0 F2?dBdu

¢o = gsin(a) sin(f) = ¢/'1 — u? sin(P)
gp = gsin(a) cos(B) = qv/'1 — u2 cos(p)
ge = qcos(a) = qu

for

Using the z, w values for Gauss-Legendre integration in “lib/gauss76.c”, the numerical integration is then:

double outer_sum = 0.0;
for (int i = 0; 1 < GAUSS_N; i++) {
const double cos_alpha = 0.5+xGAUSS_Z[i] + 0.5;

const double sin_alpha = sqgrt (1.0 - cos_alphaxcos_alpha);
const double gc = cos_alpha * g;
double inner_sum = 0.0;

for (int j = 0; J < GAUSS_N; j++) {
const double beta = M_PI_4 % GAUSS_Z[]j] + M_PI_4;
double sin_beta, cos_beta;
SINCOS (beta, sin_beta, cos_beta);

const double ga = sin_alpha » sin_beta * g;
const double gb = sin_alpha » cos_beta *» qg;
const double form = Fg(ga, gb, qc, ...);

inner_sum += GAUSS_WI[j] * form * form;
}
outer_sum += GAUSS_W[i] * inner_sum;
}
outer_sum *= 0.25; // = 8/ (4 pi) * outer_sum * (pi/2) / 4

The z values for the Gauss-Legendre integration extends from -1 to 1, so the double sum of w/iJw/[j] explains the
factor of 4. Correcting for the average dz[i]dz[j] gives (1 —0) - (/2 — 0) = /2. The 8/(4) factor comes from
the integral over the quadrant. With less symmetry (eg., in the bcc and fcc paracrystal models), then an integral
over the entire sphere may be necessary.

For simpler models which are rotationally symmetric a single integral suffices:
1

/2
I(q) = f/_ P F(qach)2 sin(a) da/m

/ F2du

dab = gsin(a) = gv/'1 —u?

ge = qcos(a) = qu

for

with integration loop:
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double sum = 0.0;
for (int i = 0; i1 < GAUSS_N; i++) {
const double cos_alpha = 0.5xGAUSS_Z[i] + 0.5;
const double sin_alpha = sgrt (1.0 - cos_alphaxcos_alpha);
const double gab = sin_alpha *» qg;
const double gc = cos_alpha * qg;
const double form = Fg(gab, gc, ...);
sum += GAUSS_WI[Jj] = form » form;
}
sum = 0.5; // = 2/pi *» sum = (pi/2) / 2

Magnetism

Magnetism is supported automatically for all shapes by modifying the effective SLD of particle according to
the Halpern-Johnson vector describing the interaction between neutron spin and magnetic field. All parameters
marked as type sld in the parameter table are treated as possibly magnetic particles with magnitude M0 and
direction mtheta and mphi. Polarization parameters are also provided automatically for magnetic models to set the
spin state of the measurement.

For more complicated systems where magnetism is not uniform throughout the individual particles, you will need
to write your own models. You should not mark the nuclear sld as type sld, but instead leave them unmarked and
provide your own magnetism and polarization parameters. For 2D measurements you will need (g, g,) values
for the measurement to compute the proper magnetism and orientation, which you can implement using Igxy(gx,

qy, parl, par2, ...).

Special Functions

The C code follows the C99 standard, with the usual math functions, as defined in OpenCL. This includes the
following:

M_PIL,M_PI 2,M_PI 4,M_SQRT1 2,M _E: 7, 7/2,7/4,1/ v/2 and Euler’s constant e

exp, log, pow(x,y), expm1, loglp, sqrt, cbrt: Power functions ¢, Inz, z¥%, ¢ — 1, Inl + z, v/z,
&/x. The functions expm1(x) and loglp(x) are accurate across all z, including z very close to
Zero.

sin, cos, tan, asin, acos, atan: Trigonometry functions and inverses, operating on radians.
sinh, cosh, tanh, asinh, acosh, atanh: Hyperbolic trigonometry functions.

atan2(y,x): Angle from the z-axis to the point (z,y), which is equal to tan~!(y/z) corrected for
quadrant. That is, if  and y are both negative, then atan2(y,x) returns a value in quadrant III
where atan(y/x) would return a value in quadrant I. Similarly for quadrants II and IV when
and y have opposite sign.

fabs(x), fmin(x,y), fmax(x,y), trunc, rint: Floating point functions. rint(x) returns the nearest inte-
ger.

NAN: NaN, Not a Number, 0/0. Use isnan(x) to test for NaN. Note that you cannot use x ==
NAN to test for NaN values since that will always return false. NAN does not equal NAN! The
alternative, x != x may fail if the compiler optimizes the test away.

INFINITY: oo,1/0. Use isinf(x) to test for infinity, or isfinite(x) to test for finite and not NaN.

erf, erfc, tgamma, Igamma: do not use Special functions that should be part of the standard, but are
missing or inaccurate on some platforms. Use sas_erf, sas_erfc, sas_gamma and sas_lgamma
instead (see below).

Some non-standard constants and functions are also provided:

M_PI_180, M_4PI_3: [T, ‘=
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SINCOS(x, s, ¢): Macro which sets s=sin(x) and c=cos(x). The variables ¢ and s must be declared
first.

square(x): 2

cube(x): z°

sas_sinx_x(x): sin(x)/z, with limit sin(0)/0 = 1.

powr(x, y): x¥ for x > 0; this is faster than general ¥ on some GPUs.
pown(x, n): z" for n integer; this is faster than general ™ on some GPUs.

FLOAT_SIZE: The number of bytes in a floating point value. Even though all variables are de-
clared double, they may be converted to single precision float before running. If your algorithm
depends on precision (which is not uncommon for numerical algorithms), use the following:

#if FLOAT SIZE>4
. code for double precision ...
#else

. code for single precision ...
#endif

SAS_DOUBLE: A replacement for double so that the declared variable will stay double precision;
this should generally not be used since some graphics cards do not support double precision.
There is no provision for forcing a constant to stay double precision.

The following special functions and scattering calculations are defined in sasmodels/models/lib. These functions
have been tuned to be fast and numerically stable down to ¢ = 0 even in single precision. In some cases they work
around bugs which appear on some platforms but not others, so use them where needed. Add the files listed in
source = ["lib/file.c", ...] toyour model.py file in the order given, otherwise these functions will
not be available.

polevl(x, ¢, n): Polynomial evaluation p(z) = > ¢;z" using Horner’s method so it is faster and
more accurate.

¢={cn,Cn-1,-..,co} is the table of coefficients, sorted from highest to lowest.
source = ["lib/polevl.c", ...] (linkto code)

plevl(x, ¢, n): Evaluation of normalized polynomial p(x) = 2"+ 37— ¢;2" using Horner’s method
so it is faster and more accurate.

¢ ={cn-1,¢n—2...,co} is the table of coefficients, sorted from highest to lowest.
source = ["lib/polevl.c", ...] (polevl.c)
sas_gamma(x): Gamma function sas_gamma(x) = I'(z).
The standard math function, tgamma(x), is unstable for < 1 on some platforms.
source = ["lib/sas_gamma.c", ...] (sas_gamma.c)
sas_gammaln(x): log gamma function sas_gammaln(z) = log T'(|z|).
The standard math function, lgamma(x), is incorrect for single precision on some platforms.
source = ["lib/sas_gammainc.c", ...] (sas_gammainc.c)

sas_gammainc(a, x), sas_gammaincc(a, x): Incomplete gamma function sas_gammainc(a,z) =
fox t*~le~tdt/T'(a) and complementary incomplete gamma function sas_gammaincc(a, z) =
[t et dt /T (a)

source = ["lib/sas_gammainc.c", ...] (sas_gammainc.c)

sas_erf(x), sas_erfc(x): Error function sas_erf(z) = % fOI e~ dt and complementary error func-

tion sas_erfc(z) = % [ et dt.

The standard math functions erf(x) and erfc(x) are slower and broken on some platforms.
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source = ["lib/polevl.c", "lib/sas_erf.c", ...] (sas_erf.c)

sas_JO(x): Bessel function of the first kind sas JO(z) =  Jo(x) where Jo(z) =
L[ cos(z sin(r)) dr.

The standard math function jO(x) is not available on all platforms.
source = ["lib/polevl.c", "lib/sas_J0.c", ...] (sas_JO.c)

sas_J1(x): Bessel function of the first kind sas_J1(x) = Jy(x) where Jy(z) = %foﬂ cos(t —
xsin(7)) dr.

The standard math function j1(x) is not available on all platforms.
source = ["lib/polevl.c", "lib/sas_Jl.c", ...] (sas_Jl.c)

sas_JN(n, x): Bessel function of the first kind and integer order n, sas_JN(n,z) = J,(x) where
Jn(x) =L [T cos(nt —asin(r)) dr. If n =0 or 1, it uses sas_JO(x) or sas_J1(z), respectively.

Warning: JN(n,x) can be very inaccurate (0.1%) for x not in [0.1, 100].
The standard math function jn(n, x) is not available on all platforms.

source = ["lib/polevl.c", "lib/sas_J0.c", "lib/sas_Jl.c", "lib/
sas_JN.c", ...] (sas_JN.c)

sas_Si(x): Sine integral Si(z) = [ 2L dt.
Warning: Si(x) can be very inaccurate (0.1%) for x in [0.1, 100].
This function uses Taylor series for small and large arguments:
For large arguments use the following Taylor series,

Si(x)mﬂ_cos(:v)<1_2!+4!_6!)_sin(x) (1_3!+51_71>

2 T 2 x2S x x x> xb

For small arguments,

x?) ZL'5 .T7 ZC9 ZCll
Si(2) ~ 2 — _ _
@)~ e e 53 T T ool Il
source = ["1lib/Si.c", ...]1(Sic)

sas_3j1x_x(x): Spherical Bessel form sph_jlc(z) = 3j1(z)/x = 3(sin(z) — z cos(z))/x3, with a
limiting value of 1 at = 0, where j; () is the spherical Bessel function of the first kind and
first order.

This function uses a Taylor series for small = for numerical accuracy.
source = ["lib/sas_37jlx_x.c", ...] (sas_3jlx_x.c)

sas_2J1x_x(x): Bessel form sas_Jlc(xz) = 2J;(x)/x, with a limiting value of 1 at x = 0, where
J1(z) is the Bessel function of first kind and first order.

source = ["lib/polevl.c", "lib/sas_Jl.c", ...] (sas_Jl.c)
Gauss76Z[i], Gauss76Wt[i]: Points z; and weights w; for 76-point Gaussian quadrature, respec-
tively, computing fil f(z)dz = 00 wi f(z).

Similar arrays are available in gauss20 . ¢ for 20-point quadrature and in gauss150.c for
150-point quadrature. The macros GAUSS_N, GAUSS_Z and GAUSS_W are defined so that you
can change the order of the integration by selecting an different source without touching the C
code.

source = ["lib/gauss76.c", ...] (gauss76.c)

208 Chapter 1. SasView User Documentation


https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_erf.c
https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_J0.c
https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_J1.c
https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_JN.c
https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_Si.c
https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_3j1x_x.c
https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_J1.c
https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/gauss76.c

SasView Documentation, Release 4.2.2

Problems with C models

The graphics processor (GPU) in your computer is a specialized computer tuned for certain kinds of problems.
This leads to strange restrictions that you need to be aware of. Your code may work fine on some platforms or for
some models, but then return bad values on other platforms. Some examples of particular problems:

(1) Code is too complex, or uses too much memory. GPU devices only have a limited amount of
memory available for each processor. If you run programs which take too much memory, then rather
than running multiple values in parallel as it usually does, the GPU may only run a single version of
the code at a time, making it slower than running on the CPU. It may fail to run on some platforms,
or worse, cause the screen to go blank or the system to reboot.

(2) Code takes too long. Because GPU devices are used for the computer display, the OpenCL drivers
are very careful about the amount of time they will allow any code to run. For example, on OS X,
the model will stop running after 5 seconds regardless of whether the computation is complete. You
may end up with only some of your 2D array defined, with the rest containing random data. Or it may
cause the screen to go blank or the system to reboot.

(3) Memory is not aligned. The GPU hardware is specialized to operate on multiple values simul-
taneously. To keep the GPU simple the values in memory must be aligned with the different GPU
compute engines. Not following these rules can lead to unexpected values being loaded into memory,
and wrong answers computed. The conclusion from a very long and strange debugging session was
that any arrays that you declare in your model should be a multiple of four. For example:

double Ig(g, pl, p2, ...)
{

double vector[8]; // Only going to use seven slots, but declare 8

The first step when your model is behaving strangely is to set single=False. This automatically restricts the model
to only run on the CPU, or on high-end GPU cards. There can still be problems even on high-end cards, so you
can force the model off the GPU by setting opencl=False. This runs the model as a normal C program without
any GPU restrictions so you know that strange results are probably from your code rather than the environment.
Once the code is debugged, you can compare your output to the output on the GPU.

Although it can be difficult to get your model to work on the GPU, the reward can be a model that runs 1000x
faster on a good card. Even your laptop may show a 50x improvement or more over the equivalent pure python
model.

Form Factors

Away from the dilute limit you can estimate scattering including particle-particle interactions using I(q) = P(q) *
S(q) where P(q) is the form factor and S(q) is the structure factor. The simplest structure factor is the hardsphere
interaction, which uses the effective radius of the form factor as an input to the structure factor model. The
effective radius is the average radius of the form averaged over all the polydispersity values.

def ER(radius, thickness):
"""Effective radius of a core-shell sphere."""
return radius + thickness

Now consider the core_shell_sphere, which has a simple effective radius equal to the radius of the core plus the
thickness of the shell, as shown above. Given polydispersity over (rl, r2, ..., rm) in radius and (¢/, 12, ..., tn)
in thickness, ER is called with a mesh grid covering all possible combinations of radius and thickness. That is,
radius is (rl, r2, ..., rm, rl, r2, ..., rm, ... ) and thickness is (t1, tl, ... tl, 12, 12, ..., t2, ... ). The ER function
returns one effective radius for each combination. The effective radius calculator weights each of these according
to the polydispersity distributions and calls the structure factor with the average ER.
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def VR (radius, thickness):
"""Sphere and shell volumes for a core-shell sphere."""

whole = 4.0/3.0 » pi * (radius + thickness) %3
core = 4.0/3.0 » pi * radiusx=*3
return whole, whole - core

Core-shell type models have an additional volume ratio which scales the structure factor. The VR function returns
the volume of the whole sphere and the volume of the shell. Like ER, there is one return value for each point in
the mesh grid.

NOTE: we may be removing or modifying this feature soon. As of the time of writing, core-shell sphere returns
(1., 1.) for VR, giving a volume ratio of 1.0.

Unit Tests

THESE ARE VERY IMPORTANT. Include at least one test for each model and PLEASE make sure that the
answer value is correct (i.e. not a random number).

tests = [
[{}, 0.2, 0.726362],
[{"scale": 1., "background": 0., "sld": 6., "sld_solvent": 1.,
"radius": 120., "radius_pd": 0.2, "radius_pd_n":45},
0.2, 0.228843],
[{"radius": 120., "radius_pd": 0.2, "radius_pd_n":45}, "ER", 120.],
[{"radius": 120., "radius_pd": 0.2, "radius_pd_n":45}, "VR", 1.],
1

tests=[[{parameters}, q, result], ...] is a list of lists. Each list is one test and contains, in order:

¢ adictionary of parameter values. This can be {/ using the default parameters, or filled with some parameters
that will be different from the default, such as { “radius”:10.0, “sld”:4}. Unlisted parameters will be given
the default values.

* the input ¢ value or tuple of (¢, g,) values.

the output I(q) or I(g,, q,) expected of the model for the parameters and input value given.

* input and output values can themselves be lists if you have several ¢ values to test for the same model
parameters.

* for testing ER and VR, give the inputs as “ER” and “VR” respectively; the output for VR should be the
sphere/shell ratio, not the individual sphere and shell values.

Test Your New Model
Minimal Testing

From SasView either open the Python shell (Tools > Python Shell/Editor) or the plugin editor (Fitting > Plugin
Model Operations > Advanced Plugin Editor), load your model, and then select Run > Check Model from the
menu bar. An Info box will appear with the results of the compilation and a check that the model runs.

If you are not using sasmodels from SasView, skip this step.

Recommended Testing

If the model compiles and runs, you can next run the unit tests that you have added using the test = values.

From SasView, switch to the Shell tab and type the following:
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from sasmodels.model_test import run_one
run_one ("~/.sasview/plugin_models/model.py")

This should print:

test_model_python (sasmodels.model_test.ModelTestCase) ... ok

To check whether single precision is good enough, type the following:

from sasmodels.compare import main as compare
compare ("~/.sasview/plugin_models/model.py")

This will pop up a plot showing the difference between single precision and double precision on a range of ¢
values.

demo = dict (scale=1, background=0,
sld=6, sld_solvent=1,
radius=120,
radius_pd=.2, radius_pd_n=45)

demo={‘par’: value, ...} in the model file sets the default values for the comparison. You can include polydis-
persity parameters such as radius_pd=0.2, radius_pd_n=45 which would otherwise be zero.

These commands can also be run directly in the python interpreter:

$ python -m sasmodels.model_test -v ~/.sasview/plugin_models/model.py $ python -m sasmod-
els.compare ~/.sasview/plugin_models/model.py

The options to compare are quite extensive; type the following for help:

’compare()

Options will need to be passed as separate strings. For example to run your model with a random set of parameters:

’compare("—random", "-pars", "~/.sasview/plugin_models/model.py")

For the random models,
¢ sld will be in the range (-0.5,10.5),
* angles (theta, phi, psi) will be in the range (-180,180),
* angular dispersion will be in the range (0,45),
¢ polydispersity will be in the range (0,1)
* other values will be in the range (0, 2v), where v is the value of the parameter in demo.

Dispersion parameters n, sigma and type will be unchanged from demo so that run times are more predictable
(polydispersity calculated across multiple parameters can be very slow).

If your model has 2D orientation calculation, then you should also test with:

compare ("-2d", "~/.sasview/plugin_models/model.py")

Check The Docs

You can get a rough idea of how the documentation will look using the following:

compare ("-help", "~/.sasview/plugin_models/model.py")

This does not use the same styling as the rest of the docs, but it will allow you to check that your ReStructuredText
and LaTeX formatting. Here are some tools to help with the inevitable syntax errors:
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* Sphinx cheat sheet

* Sphinx Documentation
e MathJax

e amsmath

There is also a neat online WYSIWYG ReStructuredText editor at http://rst.ninjs.org.

Clean Lint - (Developer Version Only)

NB: For now we are not providing pylint with the installer version of SasView; so unless you have a SasView
build environment available, you can ignore this section!

Run the lint check with:

python -m pylint --rcfile=extra/pylint.rc ~/.sasview/plugin_models/model.py

We are not aiming for zero lint just yet, only keeping it to a minimum. For now, don’t worry too much about
invalid-name. 1f you really want a variable name Rg for example because R, is the right name for the model
parameter then ignore the lint errors. Also, ignore missing-docstring for standard model functions Ig, Igac, etc.

We will have delinting sessions at the SasView Code Camps, where we can decide on standards for model files,
parameter names, etc.

For now, you can tell pylint to ignore things. For example, to align your parameters in blocks:

# pylint: disable=bad-whitespace, line-too-long

# ["name"”, "units", default, [lower, upper], "type",
—"description"],
parameters = [

["contrast_factor", "barns", 10.0, [-inf, inf], "", "Contrast factor
—of the polymer"],

["bjerrum_length", "Ang", 7.1, [0, inf], "', "Bjerrum length
;}"] 14

["virial_ paran", "1/Ang”n2", 12.0, [-inf, inf], "", "Virial parameter
(_>"J 4

["monomer_length", "Ang", 10.0, [0, inf], "", "Monomer length
(_>"J 14

["salt_concentration", "mol/L", 0.0, [-inf, inf], "", "Concentration,
—~of monovalent salt"],

["ionization_degree", ", 0.05, [0, inf], "", "Degree of

—~ionization"],

["polymer_concentration", "mol/L", 0.7, [0, inf], """, "Polymer molar,
—concentration"],

]
# pylint: enable=bad-whitespace, line-too-long

Don’t put in too many pylint statements, though, since they make the code ugly.

Share Your Model!

Once compare and the unit test(s) pass properly and everything is done, consider adding your model to the Model
Marketplace so that others may use it!

Document History

2016-10-25 Steve King
2017-05-07 Paul Kienzle - Moved from sasview to sasmodels docs
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GPU Setup

SAS model evaluations can run on your graphics card (GPU) or they can run on the processor (CPU). In general,
calculations performed on the GPU will run faster.

OpenCL Installation

Warning! GPU devices do not in general offer the same level of memory protection as CPU devices. If your code
attempts to write outside allocated memory buffers unpredicatable behaviour may result (eg, your video display
may freeze, or your system may crash, etc). Do not install OpenCL drivers without first checking for known issues
(eg, some computer manufacturers install modified graphics drivers so replacing these may not be a good idea!).
If in doubt, seek advice from an IT professional before proceeding further.

Check if you have OpenCL already installed

Windows
The following instructions are based on http://web.engr.oregonstate.edu/~mjb/cs475/DolHaveOpenCL.pdf
* Go to: Start -> Control Panel -> System & Security -> Administrative Tools
* Double Click on Computer Managment
* Click on Device Manager
¢ Click open Display Adapters
* Right-click on available adapter and select Properties
* Click on Driver
* Go to Driver Details
¢ Scroll down and see if OpenCL is installed (look for OpenCL*.dll files)
Mac OSX
For OS X operating systems higher than 10.6 OpenCL is shipped along with the system.

However, OpenCL has had a rocky history on Macs. Apple provide a useful compatibility table at https://support.
apple.com/en-us/HT202823

Installation

Windows

Depending on the graphic card in your system, drivers can be obtained from different sources:
* NVIDIA: https://developer.nvidia.com/opencl
e AMD: http://developer.amd.com/tools-and-sdks/opencl-zone/

Mac OSX

N/A

You cannot download OpenCL driver updates for your Mac. They are packaged with the normal quarterly OS X
updates from Apple.

Note: Intel provides OpenCL drivers for Intel processors at https://software.intel.com/en-us/articles/
opencl-drivers These can sometimes make use of special vector instructions across multiple processors, so it
is worth installing if the GPU does not support double precision. You can install this driver alongside the GPU
driver for NVIDIA or AMD.
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GPU Selection

The logic for choosing the compute platform is a little bit complicated. If the model has the line single=False then
it requires double precision. If the GPU is single precision only, then it will try running via OpenCL on the CPU.
If the OpenCL driver is not available for the CPU then it will run as a normal program on the CPU.

For models with a large number of parameters or with a lot of code, the GPU may be too small to run the program
effectively. In this case, you should try simplifying the model, maybe breaking it into several different models so
that you don’t need /F statements in your code. If it is still too big, you can set opencl=False in the model file and
the model will only run as a normal program on the CPU. This will not usually be necessary.

Device Selection

If you have multiple GPU devices you can tell the program which device to use. By default, the program looks for
one GPU and one CPU device from available OpenCL platforms. It prefers AMD or NVIDIA drivers for GPU,
and prefers Intel or Apple drivers for CPU. Both GPU and CPU are included on the assumption that CPU is always
available and supports double precision.

The device order is important: GPU is checked before CPU on the assumption that it will be faster. By examining
~/sasview.log you can see which device was used to run the model.

If you don’t want to use OpenCL, you can set SAS_OPENCL=None in your environment settings, and it will
only use normal programs.

If you want to use one of the other devices, you can run the following from the python console:

import pyopencl as cl
cl.create_some_context ()

This will provide a menu of different OpenCL drivers available. When one is selected, it will say “set PY-
OPENCL_CTX=...” Use that value as the value of SAS_OPENCL.

Device Testing

Unfortunately, not all vendors provide working OpenCL implementations for their GPU devices. For example,
the HD 6000 Intel GPUs with double precision support fail for some of the double precision models.

The SasView user interface provides a Fitting OpenCL Options dialog for selecting amongst and testing the avail-
able devices. After a few minutes of seeming to freeze, the application will return a list of model tests which have
passed. The same tests can be run directly from the python console using:

from sasmodels.model_tests import main as model_tests
model_tests("-v", "opencl", "all")

Compiler Selection

For models run as normal programs, you may need to specify a compiler. This is done using the SAS_COMPILER
environment variable, and the SAS_OPENMP environment variable if OpenMP support is available for the com-
piler.

On Windows, set SAS_COMPILER=tinycc for the tinycc compiler, SAS_COMPILER=msvc for the Microsoft
Visual C compiler, or SAS_COMPILER=mingw for the MinGW compiler. If TinyCC is available on the python
path (it is provided with SasView), that will be the default. If you want one of the other compilers, be sure to have
it available in your PATH so we can find it!

On Mac OS/X and Linux, set SAS_COMPILER=unix for the compiler. This will use the unix cc command to
compile the model, with gcc style command line options. For OS/X you will need to install the Xcode package to
make the compiler available.
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Document History

2017-09-27 Paul Kienzle

Scripting Interface

Need some basic details here of how to load models and data via script, evaluate them at given parameter values
and run bumps fits.

The key functions are sasmodels.core.load_model () for loading the model definition and compiling the
kernel and sasmodels.data.load_data () for calling sasview to load the data.

Preparing data

Usually you will load data via the sasview loader, with the sasmodels.data.load_data () function. For
example:

from sasmodels.data import load_data
data = load_data ("sasmodels/example/093191_201.dat")

You may want to apply a data mask, such a beam stop, and trim high q:

from sasmodels.data import set_beam stop
set_beam_stop(data, gmin, gmax)

The sasmodels.data.set_beam_stop () method simply sets the mask attribute for the data.

The data defines the resolution function and the q values to evaluate, so even if you simulating experiments prior to
making measurements, you still need a data object for reference. Use sasmodels.data.empty_datalD ()
or sasmodels.data.empty_data2D () to create a container with a given ¢ and Aq/q. For example:

import numpy as np
from sasmodels.data import empty_datalD

# 120 points logarithmically spaced from 0.005 to 0.2, with dg/q = 5%
g = np.logspace(np.logl0(5e-3), np.logl0(2e-1), 120)
data = empty_datalD (g, resolution=0.05)

To use a more realistic model of resolution, or to load data from a file format not understood by SasView, you can
use sasmodels.data.DatalD or sasmodels.data.Data2D directly. The 1D data uses x, y, dx and dy
forz = g and y = I(q), and 2D data uses x, y, z, dx, dy, dz for z,y = qx,qy and z = I(qz, qy). [Note: internally,
the Data2D object uses SasView conventions, gx_data, qy_data, data, dgx_data, dqy_data, and err_data.]

For USANS data, use 1D data, but set dx/ and dxw attributes to indicate slit resolution:

data.dxl = 0.117

See sasmodels.resolution.slit_resolution () for details.

SESANS data is more complicated; if your SESANS format is not supported by SasView you need to define a
number of attributes beyond x, y. For example:

SElength = np.linspace (0, 2400, 61) # [A]
data = np.ones_like (SElength)
err_data = np.ones_like (SElength)+0.03

class Source:
wavelength = 6 # [A]
wavelength_unit = "A"

(continues on next page)
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class Sample:
zacceptance = 0.
thickness = 0.2

class SESANSDatalD:
#q_zmax = 0.23 # [A"-1]
lam = 0.2 # [nm]
x = SElength

y = data
dy = err_data
sample = Sample ()

data = SESANSDatalD ()

X, Yy = ... # create or load sesans
data = smd.Data

The data module defines various data plotters as well.

Using sasmodels directly

Once you have a computational kernel and a data object, you can evaluate the model for various parameters using
sasmodels.direct_model.DirectModel. The resulting object f will be callable as f(par=value, ... ),
returning the I(q) for the ¢ values in the data. For example:

import numpy as np

from sasmodels.data import empty_datalD

from sasmodels.core import load_model

from sasmodels.direct_model import DirectModel

# 120 points logarithmically spaced from 0.005 to 0.2, with dgq/qg = 5%
g = np.logspace (np.logl0(5e-3), np.logl0(2e-1), 120)

data = empty_datalD (g, resolution=0.05)

kernel = load_model ("ellipsoid)

f = DirectModel (data, kernel)

Ig = f(radius_polar=100)

Polydispersity information is set with special parameter names:
* par_pd for polydispersity width, Ap/p,
* par_pd_n for the number of points in the distribution,
* par_pd_type for the distribution type (as a string), and

* par_pd_nsigmas for the limits of the distribution.

Using sasmodels through the bumps optimizer

Like DirectModel, you can wrap data and a kernel in a bumps model with class:sasmodels.bumps_model.Model
and create an class:sasmodels.bumps_model. Experiment that you can fit with the bumps interface. Here is an
example from the example directory such as example/model.py:

import sys

from bumps.names import x

from sasmodels.core import load_model

from sasmodels.bumps_model import Model, Experiment

from sasmodels.data import load_data, set_beam stop, set_top

mmm IMPORT THE DATA USED """

(continues on next page)
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radial_data = load_data ('DEC07267.DAT")
set_beam_stop(radial_data, 0.00669, outer=0.025)
set_top(radial_data, -.0185)

kernel = load_model ("ellipsoid")

model = Model (kernel,

scale=0.08,

radius_polar=15, radius_equatorial=800,

sld=.291, sld_solvent=7.105,

background=0,

theta=90, phi=0,

theta_pd=15, theta_pd_n=40, theta_pd_nsigma=3,

radius_polar_pd=0.222296, radius_polar_pd_n=1, radius_polar_pd_nsigma=0,

radius_equatorial_ pd=.000128, radius_equatorial_pd_n=1, radius_equatorial_pd_
—nsigma=0,

phi_pd=0, phi_pd_n=20, phi_pd _nsigma=3,

)

# SET THE FITTING PARAMETERS
model.radius_polar.range (15, 1000)
model.radius_equatorial.range (15, 1000)
model.theta_pd.range (0, 360)

model .background.range (0, 1000)
model.scale.range (0, 10)

#cutoff = 0 # no cutoff on polydisperisity loops
#cutoff = le-5 # default cutoff
cutoff = le-3 # low precision cutoff

M = Experiment (data=radial_data, model=model, cutoff=cutoff)
problem = FitProblem (M)

Assume that bumps has been installed and the bumps command is available. Maybe need to set the path to
sasmodels/sasview using PYTHONPATH=path/to/sasmodels:path/to/sasview/src. To run the model use the bumps
program:

’$ bumps example/model.py —-preview

Note that bumps and sasmodels are included as part of the SasView distribution. On windows, bumps can be
called from the cmd prompt as follows:

’SasViewCom bumps.cli example/model.py —-preview

Calling the computation kernel

Getting a simple function that you can call on a set of q values and return a result is not so simple. Since
the time critical use case (fitting) involves calling the function over and over with identical g values, we
chose to optimize the call by only transfering the ¢ values to the GPU once at the start of the fit. We do
this by creating a sasmodels.kernel.Kernel object from the sasmodels.kernel.KernelModel
returned from sasmodels.core.load_model () using the sasmodels.kernel.KernelModel.
make_kernel () method. What it actual does depends on whether it is running as a DLL, as OpenCL or
as a pure python kernel. Once the kernel is in hand, we can then marshal a set of parameters into a sasmodels.
details.CallDetails object and ship it to the kernel using the sansmodels.direct_model.
call_kernel () function. An example should help, example/cylinder_eval.py:

from numpy import logspace
from matplotlib import pyplot as plt
from sasmodels.core import load_model

(continues on next page)
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(continued from previous page)

from sasmodels.direct_model import call_kernel

model = load_model ('cylinder')

q = logspace (-3, -1, 200)

kernel = model.make_kernel ([g])

Ig = call_kernel (kernel, dict (radius=200.))
plt.loglog (g, Iq)

plt.show ()

On windows, this can be called from the cmd prompt using sasview as:

SasViewCom example/cylinder_eval.py

References

Small-Angle Scattering of X-Rays A Guinier and G Fournet John Wiley & Sons, New York (1955)

P Stckel, R May, I Strell, Z Cejka, W Hoppe, H Heumann, W Zillig and H Crespi Eur. J. Biochem., 112, (1980),
411-417

G Porod in Small Angle X-ray Scattering (editors) O Glatter and O Kratky Academic Press (1982)

Structure Analysis by Small-Angle X-Ray and Neutron Scattering L.A Feigin and D I Svergun Plenum Press, New
York (1987)

S Hansen J. Appl. Cryst. 23, (1990), 344-346

S J Henderson Biophys. J. 70, (1996), 1618-1627

B C McAlister and B P Grady J. Appl. Cryst. 31, (1998), 594-599
S R Kline J Appl. Cryst. 39(6), (2006), 895

Also see the references at the end of the each model function descriptions.

1.3.2 P(r) Calculation

Description

This tool calculates a real-space distance distribution function, P(r), using the inversion approach (Moore, 1980).
P(r) is set to be equal to an expansion of base functions of the type

mnr

() = 2rsin( )

max
The coefficient of each base function in the expansion is found by performing a least square fit with the following
fit function

X2 _ Zi([meaS(Qi) - Ith(Qi))2 + Reg_term

error?

where I,¢q5(Q;) is the measured scattering intensity and I;j,(Q);) is the prediction from the Fourier transform of
the P(r) expansion.

The Reg_term term is a regularization term set to the second derivative d P(r)/d?r integrated over . It is used
to produce a smooth P(r) output.

218 Chapter 1. SasView User Documentation




SasView Documentation, Release 4.2.2

Using P(r) inversion

The user must enter
* Number of terms: the number of base functions in the P(r) expansion.
* Regularization constant: a multiplicative constant to set the size of the regularization term.
* Maximum distance: the maximum distance between any two points in the system.

P(r) inversion requires that the background be perfectly subtracted. This is often difficult to do well and thus many
data sets will include a background. For those cases, the user should check the “Estimate background level” option
and the module will do its best to estimate it. If you know the background value for your data, select the “Input
manual background level” option. Note that this value will be treated as having 0 error.

The P(r) module is constantly computing in the background what the optimum number of terms should be as well
as the optimum regularization constant. These are constantly updated in the buttons next to the entry boxes on the
GUI. These are almost always close and unless the user has a good reason to choose differently they should just
click on the buttons to accept both. {D_max} must still be set by the user. However, besides looking at the output,
the user can click the explore button which will bring up a graph of chi*2 vs Dmax over a range around the current
Dmax. The user can change the range and the number of points to explore in that range. They can also choose to
plot several other parameters as a function of Dmax including: 10, Rg, Oscillation parameter, background, positive
fraction, and 1-sigma positive fraction.

Reference

P.B. Moore J. Appl. Cryst., 13 (1980) 168-175

Note: This help document was last modified by Paul Butler, 05 September, 2016

1.3.3 Invariant Calculation

Description
The scattering, or Porod, invariant (Q*) is a model-independent quantity that can be easily calculated from scat-
tering data.

For two phase systems, the scattering invariant is defined as the integral of the square of the wavevector transfer
(Q) multiplied by the scattering cross section over the full range of ) from zero to infinity, that is

* O02 d
Q /0 q°1(q) dq

in the case of pinhole geometry. For slit geometry the invariant is given by

Q"= Aqv/o ql(q) dq

where Ag, is the slit height.

The worth of @Q* is that it can be used to determine the volume fraction and the specific area of a sample. Whilst
these quantities are useful in their own right they can also be used in further analysis.

The difficulty with using Q™ arises from the fact that experimental data is never measured over the range 0 < @ <
0o. At best, combining USAS and WAS data might cover the range 107> < @ < 10 1/A . Thus it is usually
necessary to extrapolate the experimental data to low and high Q. For this

High-Q region (>= Qmax in data)

* The power law function C'/Q* is used where the constant C' = 27rApS, is to be found by fitting part of
data within the range QN _,, to @n (Where m < N).
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Low-(Q region (<= Qmin in data)

¢ The Guinier function Igexp( —R3Q2 /3) where I and R, are obtained by fitting as for the high-Q) region
above. Alternatively a power law can be used.

Using invariant analysis

1. Select Invariant from the Analysis menu on the SasView toolbar.
Load some data with the Data Explorer.

Select a dataset and use the Send To button on the Data Explorer to load the dataset into the Invariant panel.

Ll

Use the Customised Input boxes on the Invariant panel to subtract any background, specify the contrast (i.e.
difference in SLDs - this must be specified for the eventual value of Q* to be on an absolute scale), or to
rescale the data.

5. Adjust the extrapolation range as necessary. In most cases the default values will suffice.
6. Click the Compute button.
7. To include a lower and/or higher ) range, check the relevant Enable Extrapolate check boxes.

If power law extrapolations are chosen, the exponent can be either held fixed or fitted. The number of points,
Npts, to be used for the basis of the extrapolation can also be specified.

8. If the value of Q* calculated with the extrapolated regions is invalid, a red warning will appear at the top of
the Invariant panel.

The details of the calculation are available by clicking the Details button in the middle of the panel.
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Parameters

Volume Fraction

The volume fraction ¢ is related to Q* by

. Q
where Ap is the SLD contrast.
1++v1—4A
0= 2

Specific Surface Area

The specific surface area .S, is related to Q* by

_ 21é(1 — @)C, _ 2mAG,

Sy
Q* Q*

where C), is the Porod constant.

Reference

O. Glatter and O. Kratky Chapter 2 in Small Angle X-Ray Scattering Academic Press, New York, 1982

http://web.archive.org/web/20110824105537/http://physchem.kfunigraz.ac.at/sm/Service/Glatter_Kratky_
SAXS_1982.zip

Note: This help document was last changed by Steve King, 01May2015

1.3.4 Correlation Function Analysis

Description

This currently performs correlation function analysis on SAXS/SANS data, but in the the future is also planned
to generate model-independent volume fraction profiles from the SANS from adsorbed polymer/surfactant layers.
The two types of analyses differ in the mathematical transform that is applied to the data (Fourier vs Hilbert).
However, both functions are returned in real space.

A correlation function may be interpreted in terms of an imaginary rod moving through the structure of the mate-
rial. I'(x) is the probability that a rod of length x has equal electron/neutron scattering length density at either end.
Hence a frequently occurring spacing within a structure will manifest itself as a peak in I'(x). SasView will return
both the one-dimensional ( I';(x) ) and three-dimensional ( I'5(x) ) correlation functions, the difference being that
the former is only averaged in the plane of the scattering vector.

A volume fraction profile ®(z) describes how the density of polymer segments/surfactant molecules varies with
distance, z, normal to an (assumed locally flat) interface. The form of ®(z) can provide information about the
arrangement of polymer/surfactant molecules at the interface. The width of the profile provides measures of the
layer thickness, and the area under the profile is related to the amount of material that is adsorbed.

Both analyses are performed in 3 stages:
» Extrapolation of the scattering curve to ¢ = 0 and toward ¢ = oo

¢ Smoothed merging of the two extrapolations into the original data
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* Fourier / Hilbert Transform of the smoothed data to give the correlation function or volume fraction profile,
respectively

* (Optional) Interpretation of I'; (x) assuming the sample conforms to an ideal lamellar morphology

Extrapolation

Tog=0

The data are extrapolated to q = O by fitting a Guinier function to the data points in the low-q range.

The equation used is:
I(q) = Ac""
Where the parameter B is related to the effective radius-of-gyration of a spherical object having the same small-

angle scattering in this region.

Note that as q tends to zero this function tends to a limiting value and is therefore less appropriate for use in
systems where the form factor does not do likewise. However, because of the transform, the correlation functions
are most affected by the Guinier back-extrapolation at large values of x where the impact on any extrapolated
parameters will be least significant.

Tog=

The data are extrapolated towards q = oo by fitting a Porod model to the data points in the high-q range and then
computing the extrapolation to 100 times the maximum q value in the experimental dataset. This should be more
than sufficient to ensure that on transformation any truncation artefacts introduced are at such small values of x
that they can be safely ignored.

The equation used is:
I(q) = K'q*‘lefq%'2 + By

Where By is the background, K is the Porod constant, and o (which must be > 0) describes the width of the
electron/neutron scattering length density profile at the interface between the crystalline and amorphous regions
as shown below.

Smoothing

The extrapolated data set consists of the Guinier back-extrapolation from q ~ 0 up to the lowest q value in the
original data, then the original scattering data, and then the Porod tail-fit beyond this. The joins between the
original data and the Guinier/Porod extrapolations are smoothed using the algorithm below to try and avoid the
formation of truncation ripples in the transformed data:

Functions f(x;) and g(x;) where z; € {x1, 22, ..., x,}, are smoothed over the range [a, b] to produce y(x;), by
the following equations:

y(zi) = hig(z:) + (1 — hy) f ()

where:

= TGoe
1+ (zi—a)?
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Hectron density

1

Crystalline

Arnarmphous

Lo o

High o

Transformation

Fourier

Cistance

If “Fourier” is selected for the transform type, SasView will perform a discrete cosine transform on the extrapolated

data in order to calculate the 1D correlation function as:

= c; /OOO I(g)q*cos(qx)dq

where Q" is the Scattering (also called Porod) Invariant.

[i(z)

The following algorithm is applied:

N-1
1
[(xy) =2 Z T, COS [;\r] <n+2> k} fork =0,1,.
n=0

The 3D correlation function is calculated as:

Ia(z) = 5* /O I(q>q2%dq

., N—-1,N

Note: It is always advisable to inspect I';(x) and I'3(x) for artefacts arising from the extrapolation and transfor-

mation processes:

¢ do they tend to zero as x tends to co?

* do they smoothly curve onto the ordinate at x = 0? (if not check the value of ¢ is sensible)

e are there ripples at x values corresponding to (2 7 over) the two q values at which the extrapolated and

experimental data are merged?

* are there any artefacts at x values corresponding to 2 7 / qmax in the experimental data?

spacings in the sample?!!!

and lastly, do the significant features/peaks in the correlation functions actually correspond to anticpated
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Finally, the program calculates the interface distribution function (IDF) g;(x) as the discrete cosine transform of:
—q*I(q)

The IDF is proportional to the second derivative of I'{(x) and represents a superposition of thickness distributions
from all the contributing lamellae.

Hilbert

If “Hilbert” is selected for the transform type, the analysis will perform a Hilbert transform on the extrapolated
data in order to calculate the Volume Fraction Profile.

Note: The Hilbert transform functionality is not yet implemented in SasView.

Interpretation

Correlation Function

Once the correlation functions have been calculated SasView can be asked to try and interpret I'; (x) in terms of an
ideal lamellar morphology as shown below.

The structural parameters extracted are:
* Long Period = L,
¢ Average Hard Block Thickness = L,
» Average Core Thickness = Dy
» Average Interface Thickness = Dy,
* Polydispersity = T'iin/Timax
* Local Crystallinity = L./L,,

Warning: If the sample does not possess lamellar morphology then “Compute Parameters” will return
garbage!

Volume Fraction Profile

SasView does not provide any automatic interpretation of volume fraction profiles in the same way that it does for
correlation functions. However, a number of structural parameters are obtainable by other means:

¢ Surface Coverage = 0

¢ Anchor Separation = D
* Bound Fraction =< p >
* Second Moment = o

¢ Maximum Extent = §y,
¢ Adsorbed Amount =T'

The reader is directed to the references for information on these parameters.
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Extraction of ideal lamellar parameters firom
the one dimensional correlaion function.
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References
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Usage

Upon sending data for correlation function analysis, it will be plotted (minus the background value), along with
a red bar indicating the upper end of the low-Q range (used for Guinier back-extrapolation), and 2 purple bars
indicating the range to be used for Porod forward-extrapolation. These bars may be moved by grabbing and
dragging, or by entering appropriate values in the Q range input boxes.

Once the Q ranges have been set, click the “Calculate Bg” button to determine the background level. Alterna-
tively, enter your own value into the box. If the box turns yellow this indicates that background subtraction has
created some negative intensities. This may still be fine provided the peak intensity is very much greater than the
background level. The important point is that the extrapolated dataset must approach zero at high-q.

Now click the “Extrapolate” button to extrapolate the data. The graph window will update to show the extrap-
olated data, and the values of the parameters used for the Guinier and Porod extrapolations will appear in the
“Extrapolation Parameters” section of the SasView GUI.

Now select which type of transform you would like to perform, using the radio buttons:
¢ Fourier: to perform a Fourier Transform to calculate the correlation functions
* Hilbert: to perform a Hilbert Transform to calculate the volume fraction profile

and click the “Transform” button to perform the selected transform and plot the results.

If a Fourier Transform was performed, the “Compute Parameters” button can now be clicked to interpret the
correlation function as described earlier. The parameters will appear in the “Output Parameters” section of the
SasView GUL
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Note: This help document was last changed by Steve King, 28Sep2017

1.4 Tools & Utilities

Note: In Windows use [Alt]-[Cursor left] to return to the previous page

1.4.1 Data Operations Tool

Description

This tool permits arithmetic operations between two data sets. Alternatively, the last data set can be a number.

NOTE! When Datal and Data2 are both data, their Q (or Qx and Qy for 2D) value(s) must match with each other
UNLESS using the ‘append’ operator.

Using the tool

1.

2
3.
4

Ensure you have loaded data into the Data Explorer (see Loading Data).

. Select Data Operation from the Tool menu on the SasView toolbar.

Select a dataset/theory in the drop-down menu Datal. A mini-plot of the data will appear underneath.

. Select a dataset/theory in the drop-down menu Data?2 or select Number and enter a number in the box that

appears alongside.

Select an arithmetic operator symbol from the Operator drop-down. The available operators are:
+ (for addition)

- (for subtraction)

* (for multiplication)

/ (for division)

| (for combination of two data sets)

If two data sets do not match, the operation will fail and the background color of the combo box items
will turn to red (WIN only).

If the operation is successful, hit the Apply button to make the new dataset. The new dataset will appear in
the Data Explorer.

NOTE! Any errors and warnings will be displayed at the bottom of the SasView window.
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Note: This help document was last changed by Steve King, 01May2015

1.4.2 SLD Calculator Tool

Description

The neutron scattering length density (SLD, ) is defined as
5N = (bcl + bc2 + ...+ bcn)/vm

where b.; is the bound coherent scattering length of ith of n atoms in a molecule with the molecular volume V,,.

Specifying the Compound Name
To calculate scattering length densities enter the empirical formula of a compound and its mass density and click
“Calculate”.
Entering a wavelength value is optional (a default value of 6.0 A will be used).
TIPS!
» Formula strings consist of atoms and the number of them, such as “CaCO3+6H20”.
* Groups can be separated by ‘+’ or space, so “CaCO3 6H20” works as well.
* Groups can be defined using parentheses, such as “CaCO3(H20)6”.
¢ Parentheses can be nested, such as “(CaCO3(H20)6)1”.

* Isotopes are represented by their atomic number in square brackets, such as “CaCO[18]3+6H20”, H[1], or
HI[2].

* Numbers of atoms can be integer or decimal, such as “CaCO3+(3HO0.5)2”.

The SLD of mixtures can be calculated as well. For example, for a 70-30 mixture of H20/D20 write
“H1407+D603” or more simply “H7D305” (i.e. this says 7 hydrogens, 3 deuteriums, and 5 oxygens) and
enter a mass density calculated on the percentages of H20 and D20.

Type “C[13]6 H[2]12 O[18]6” for C(13)6H(2)120(18)6 (6 Carbon-13 atoms, 12 deuterium atoms, and 6
Oxygen-18 atoms).
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Note: This help document was last changed by Paul Kienzle, 05Apr2017

1.4.3 Density/Volume Calculator Tool

Description

This tool calculates the mass density from the molar volume or vice versa. To calculate the mass density, the
chemical formula and molar volume should be provided.

Using the tool

1. Select Density/Volume Calculator from the Tool menu on the SasView toolbar.

2. Enter the empirical formula of a molecule. For mixtures, the ratio of each of the molecules should be used,
for example, (H20)0.5(D20)0.5.

3. Use the input combo box to choose between molar volume or mass density and then type in an input value.

4. Click the ‘Calculate’ button to perform the calculation.

- Density/Volume Calculator ||| -G |
Inputs
Molecular Formula | (H20)0.5(D20)0.5 e.g., H20
Mass Density v | 1.05 g/em*(3)
Outputs
Molar Mass 19.02144 g/mol
Molar Volume + 18.11566 cm”™(3)/mol

Calculate HELP

Note: This help document was last changed by Steve King, 01May2015

1.4.4 Slit Size Calculator Tool

Description

This tool enables X-ray users to calculate the slit size (FWHM/2) for resolution smearing purposes based on their
half beam profile data (as Q vs Intensity; any other data fields are ignored).
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Method

The tool works by sequentially summing 10 or more intensity values until a maximum value is attained. It then
locates the Q values for the points just before, and just after, half of this maximum value and interpolates between
them to get an accurate value for the Q value for the half maximum.

NOTE! Whilst it may have some more generic applicability, the calculator has only been tested with beam profile
data from Anton-Paar SAXSess™ software. The beam profile file does not carry any information about the units
of the Q data. It is probably nm™! but the resolution calculations assume the slit height/width has units of ATt
the beam profile data is not in these units then it, or the result, must be manually converted.

Using the tool

1. Select Slit Size Calculator from the Tool menu on the SasView toolbar.
2. Load a beam profile file in the Data field using the Browse button.

NOTE! To see an example of the beam profile file format, visit the file beam profile. DAT in your {installa-
tion_directory}/SasView/test_l1d folder.

3. Once a data is loaded, the slit size is automatically computed and displayed in the tool window.

Note: This help document was last changed by Steve King, 09Sep2018

1.4.5 Kiessig Thickness Calculator Tool

Description

This tool estimates real space dimensions from the position or spacing of features in recipricol space. In particular
a particle of size d will give rise to Bragg peaks with spacing Aq according to the relation

d=2r/Aq
Similarly, the spacing between the peaks in Kiessig fringes in reflectometry data arise from layers of thickness d.
Using the tool

To get a rough thickness or particle size, simply type the fringe or peak position (in units of 1/A) and click on the
Compute button.

Note: This help document was last changed by Paul Kienzle, 05Apr2017

1.4.6 Q Resolution Estimator Tool

Description

This tool is approximately estimates the resolution of ) from SAS instrumental parameter values assuming that
the detector is flat and normal to the incident beam.
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Using the tool

8.

. Select SAS Resolution Estimator from the Tool menu on the SasView toolbar.

Select the source (Neutron or Photon) and source type (Monochromatic or TOF).

NOTE! The computational difference between the sources is only the gravitational contribution due to the
mass of the particles.

Change the default values of the instrumental parameters as required. Be careful to note that distances are
specified in cm!

Enter values for the source wavelength(s), A, and its spread (= FWHM/\).

For monochromatic sources, the inputs are just one value. For TOF sources, the minimum and maximum
values should be separated by a ‘-* to specify a range.

Optionally, the wavelength (BUT NOT of the wavelength spread) can be extended by adding ‘; nn” where
the ‘nn’ specifies the number of the bins for the numerical integration. The default value is nn = 10. The
same number of bins will be used for the corresponding wavelength spread.

For TOF, the default wavelength spectrum is flat. A custom spectral distribution file (2-column text: wave-
length (A) vs Intensity) can also be loaded by selecting Add new in the combo box.

When ready, click the Compute button. Depending on the computation the calculation time will vary.

1D and 2D d(Q values will be displayed at the bottom of the panel, and a 2D resolution weight distribution
(a 2D elliptical Gaussian function) will also be displayed in the plot panel even if the () inputs are outside
of the detector limit (the red lines indicate the limits of the detector).

TOF only: green lines indicate the limits of the maximum () range accessible for the longest wavelength
due to the size of the detector.

Note that the effect from the beam block/stop is ignored, so in the small ) region near the beam block/stop

[ie., Q < (27 - w)/(ds - Amin ), Where w is the beam block diameter, d; is the sample-to-detector distance,
and Ay is the minimum wavelength.]

the variance is slightly under estimated.

A summary of the calculation is written to the SasView Console at the bottom of the main SasView window.
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I SANS Resolution Estimator Define source. Most case it should be ‘Neutron’.

Select ‘Photon” for X-ray.
Thisselection affects only on the gravitational

contribution of the resolution J‘ Mono chromatic or TOF selection

[Instrumental Parameters]:

Wavelength: |5.0-12.0 [A]  Spectrum: [ga¢ 1
wavelenath " amE e 1 = N
Wavelength Spread: [ 0.125-0.125 One value fora circular aperture (diameter)

Ortwo values separated by (,] forarectangular slit{lengths’
Source Aperture Size: 3.81 P Vi) g (lengths)

Source to Sample Aperture Distance: 1627 [em]
Sample Aperfure to Detector Distance: 1000 fom]

Sample Offset: [ ] [o

Sample Aperture Size: | 1375 One value forone (gx,qy) location
' or more values separated by (,) for more locations.
Note: The Qx and Qy input boxes should have asame

numberofvalues witheach other.

humber of Pixels on Detector: | 123, 12

Detector Pixel Size: 0.5, 0.5 | [em]
-0.01

[Q Location of the Estimat

Qx: .0,0,01,0,02,0.02,0.01,0 13 [1/a)
Qy: [u:.-:-.u:l.n:.a,u2.u3.u:-3.u3.n.u:,-:-.n1.0.-:-2.0.03 | [yAl

[standard Deviation of the Resolution Distribution]:

A AS A AN A AT

1D dg at the last {Qx, Qy] point of inputs.

0.00
| QA"

Sigma_x: 0.0003843

Sigma_lamd:

20 dQ_lamda at the last {Qx, Qy) point of inputs.
Note:dQ_lamdahas only the Qr directional component.

I E5et [ C:r.?:’éute ] [ Close ] J\ = @ (< |

Click on the ‘Compute’ bution to
compute.

Theory

The scattering wave transfer vector is by definition

q = k.~ ke

Flat detector

g=|q| =4n/k sin[B/2}

Variance of g,

ot~ aP [(A) 2/ 32 + (A6)/67] k, -
fora small angle. yd

= G?\: +0 ac: {+ G;r2 :I

W’he!’e g e:z = Gsr:: + stm;éez + cdet:

= <q®> - <qn?
=k? [<T %% - <Ty > +..,

ky

Ik; |= [k [=k =27/A
for the elastic scattering

settingq = 2m/1[Ty + To(r) + Toir) + ...]

In the small-angle limit, the variance of @ is to a first-order approximation
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2 - 2 2 2
Oq,x Ogex” F i"jse«mplf-: « Tty
2 — 2 2
Uq_.s,'z Osrzc,y + Usample ¥ 2+ Udetyr + Ug
Uq_.r = Oy
- Neutron beam
. . <)"1_> at source:
o P k- = | eg, sample aperture/slit
. L~ |
)
G-_'-.’:.’ED‘-"E.- = k_ 2 !
' L™ |
L i
o)
Gd:. = k_ 0
) L
s kT b(2 4) v—Rr )
o2 \

12

Detector element:
eg, pixel

Neutron beam

atsample:
eg, sample aperture/slit

A= Ly(Ly+Ly)gm?/(217) where Av, = -A 2.

The geometric and gravitational contributions can then be summarised as

Geometric Contribution CaseI:
Rectangular shape w/x by y .

Geometric Contribution Case I1:
Circular shape w/ R =radius
of an aperture;

@

The wavelength contribution is always in R

direction (including the gravitational effect) g, = B L e |
Triangular pulse: b =2 AN . » K DR +242)( Q;,‘f_
Rectangular pulse: b =1 1D: () =0, :1_‘ Li S |
The gravitational contribution is always in y
See above.

(vertical) direction and can not be separated
from the wavelength contribution.

The terms with A are due to the gravitation.

Finally, a Gaussian function is used to describe the 2D weighting distribution of the uncertainty in Q).

References

D.F.R. Mildner and J.M. Carpenter J. Appl. Cryst. 17 (1984) 249-256
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D.F.R. Mildner, J.M. Carpenter and D.L. Worcester J. Appl. Cryst. 19 (1986) 311-319

Note: This help document was last changed by Steve King, 01May2015

1.4.7 Generic SANS Calculator Tool
Description

This tool attempts to simulate the SANS expected from a specified shape/structure or scattering length density
profile. The tool can handle both nuclear and magnetic contributions to the scattering.

Theory

In general, a particle with a volume V' can be described by an ensemble containing /N 3-dimensional rectangular
pixels where each pixel is much smaller than V.

Assuming that all the pixel sizes are the same, the elastic scattering intensity from the particle is

2

N
1(Q) = % Zvjﬁj exp(iQ - 7))

Equation 1.
where §3; and r; are the scattering length density and the position of the 4™ pixel respectively.

The total volume V'

V:ZU]‘

J
for B; # 0 where v; is the volume of the 4™ pixel (or the 7 natural atomic volume (= atomic mass / (natural

molar density * Avogadro number) for the atomic structures).

V' can be corrected by users. This correction is useful especially for an atomic structure (such as taken from a
PDB file) to get the right normalization.

NOTE! ; displayed in the GUI may be incorrect but this will not affect the scattering computation if the correction
of the total volume V is made.

The scattering length density (SLD) of each pixel, where the SLD is uniform, is a combination of the nuclear and
magnetic SLDs and depends on the spin states of the neutrons as follows.

Magnetic Scattering

For magnetic scattering, only the magnetization component, M | , perpendicular to the scattering vector Q con-
tributes to the magnetic scattering length.
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Mo
M
x’ n
z,7 X

M_ = (Mlx, M.y, MLz)

The magnetic scattering length density is then

BM_mU‘MJ_:DMU‘MJ_

- 2up

where the gyromagnetic ratio is v = —1.913, up is the Bohr magneton, 7 is the classical radius of electron, and
o is the Pauli spin.

For a polarized neutron, the magnetic scattering is depending on the spin states.

Let us consider that the incident neutrons are polarised both parallel (+) and anti-parallel (-) to the x’ axis (see
below). The possible states after scattering from the sample are then

* Non-spin flips: (++) and (- -)
 Spin flips: (+-) and (- +)

Polarization (up) direction Magnetization direction Polarization (up) direction

A

Now let us assume that the angles of the Q vector and the spin-axis (') to the z-axis are ¢ and 6,,, respectively (see
above). Then, depending upon the polarization (spin) state of neutrons, the scattering length densities, including
the nuclear scattering length density (5y) are given as

* for non-spin-flips
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* for spin-flips

where

B+t = BN F DMy o

Bis = —Dp(Myy £iM, )

My = Mog, cos bup + Mog, sin by,
My = Myg, cos Oup — Mg, sin Oy,
M. = Mo

Moyg, = (Mo, cos ¢ — Moy, sin ¢) cos ¢
Mg, = (Mo, sin ¢ — Mo, cos @) sin ¢

Here the My,, My, and My, are the x, y and z components of the magnetisation vector in the laboratory x-y-z

frame.

Using the tool

# Generic Scattering Calculator

Flle Help

SLD Data File

Load .sld, .txt, or.omf data file

Data: ‘ Rectangular SLD (Sample) Profile

; Load

Shape: ‘Rectangular

We subport the omf or sld data files onlv.

Very slow drawing --»
v

EBX

SLD Pixel Info

Input Parameters

Parameter  Value
Up_frac_f [1

\Select default shape of

Draw magnetization
w/arrows
*Notrecommending fo
large number of pixels

sample ;.
] [uf{u+d)]

o

Up_frac_i | 1
Up_theta | 0
background |

the ratio of (+ /total)
neutrons after
analyzer

scale | 1

Polarization Angle

solvent_SLD (g0

ITATLET B

total_volume | 2160000 N

A~(3) the ratio of (+ /total)

MNo. of Qx (Qy) bins: | 50

Qx (Qy) Max: 0.1

*Estimated Computation time : 2 sec

: neutrons before sample

Default total volume calculated from
the pii nformation (or natural density

Computes the scattering pattern

for pdb file)
>

No. of Pixels: | 1000

Mean SLD

My |.3 |[1,f'A“[2)]
My |.3 |[1.M“[2)]
Mz o |}
Nodl (657605 |[1/A%(2)

Nodes

xnodeE | 19

ynodes | 1p i

|

mafes 1) | Savethe
sld data as
sld format
StPp Size
stepsize | & A)

ystepsize | ¢
zstepsize | 6

Displays mean values, or put a new
value if enabled

lDraw Points ] ISave SLD Data ]

After computation the result will appear in the Theory box in the SasView Data Explorer panel.

Up_frac_in and Up_frac_out are the ratio

(spin up) / (spin up + spin down)
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of neutrons before the sample and at the analyzer, respectively.

NOTE 1. The values of Up_frac_in and Up_frac_out must be in the range 0.0 to 1.0. Both values are 0.5 for
unpolarized neutrons.

NOTE 2. This computation is totally based on the pixel (or atomic) data fixed in xyz coordinates. No angular
orientational averaging is considered.

NOTE 3. For the nuclear scattering length density, only the real component is taken account.

Using PDB/OMF or SLD files
The SANS Calculator tool can read some PDB, OMF or SLD files but ignores polarized/magnetic scattering when
doing so, thus related parameters such as Up_frac_in, etc, will be ignored.

The calculation for fixed orientation uses Equation 1 above resulting in a 2D output, whereas the scattering calcu-
lation averaged over all the orientations uses the Debye equation below providing a 1D output

1(G) = Z 08,3 0, S9N = i)

P Q75 — 7|

where v;3; = b; is the scattering length of the j™ atom. The calculation output is passed to the Data Explorer for
further use.

#® Generic Scattering Calculator

File Help
BEE B 9
SLD Pixel Info
SLD Data File
Data: | lysozyme.pds ! [ Load l Na. of Pixels: i-Tl_ES ]
We support omf, <ld or pdb data files only. Very SLOW drawing —> Mean 510
M | |[1-'.-'-\."' (2]
My | | [1/an )]
) Co—| T
Input Parameters Ml i'i_i[lfﬁ-‘”z"]
. 1 A=)
Parameter  Yalue Unit i i
Up_fracin | | [uf{u+d)]
Up_frac_out | 19 | [uftu+di Modes
1

o - ] xnodes | [haM |

Up_theta '_g,gﬁ"— \| [deg]

badkground i.j_g i [1fem] \;nodesl i

scale | 10 | anodes | . |
solvent_SLD |gl.:| | 1/a~(2)

total_volume | 19503.0574344 | A~(3) Step Size

xstepsize [1=r | [A]

Q Range ystepsize | | [a]
Mo, of Qx (Qy) bins: | Sisislz | 7I [A]

Qx (Qy) Max: | 0.3 | [1/A]

_____ [ oraw Points | [ Save SLD Data |

*Estimated Computation time : 3 sec Ead arientation . | ’ Compute ]

Fixed orientation
Debye full avg.

Note: This help document was last changed by Steve King, 01May2015
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1.4.8 Python Shell-Editor Tool

Description

This is a Python shell/editor provided with WxPython.
For the help about Python, visit the website http://docs.python.org/tutorial/

Note: This shell/editor has its own help, but the Help() and Credits() calls do not work on Macs.

The NumPy, SciPy, and Matplotlib, etc, libraries are shipped with SasView and so functions from these can be
imported into the shell/editor, however, some functionality may not work.

" Python Shell/Editor EI@

File Edit VYiew Run Options Help

*Shell*

Py 0.9.8

Python 2.7.12 |Anaconda 2.4.0 (32-bit)| (defauwlt, Jun 29 2016, 11:42:13) [M3C v.1500 32 bit
(Intel)] on win3z2

Type "help", "copyright™, "credits" or "license" for more information.

R

>»> import numpy as np

st

| »

m

Namespace | Display | Calltip | Historyl Dispatcher

»

- Ingredients Ingredients
Type: <type 'dict'>

Value: {'pp': <bound method Display.setltem of <wx.pv.crust.
Display:; proxy of <Swig Cbhbject of type 'wxStyledTextclCcrl *=' at
Oxclf8ff8> >»», 'shell': «<wx.py.shell.Shell; proxy of «<Swig Cbject
of type 'wxStyledTextCtrl =' at Oxclf3068> >, ' builtinz ': <
module " builtin ' (built-in)}>, " package ': Nome, "filling': .
<Wx.py.filling.Filling; proxy of <Swig Cbject of type
'wrSplitterWindow =' at Oxc2016d8» », 'notebook': <wx._controls.
Hotebook; proxy of <Swig Cbject of type 'wxlNotebook *' at

0xc201500> >, '"np': <module 'numpy' from
'C:\Bnaconda2\lib\site-packages\numpyh_ init .pyc'>, ' name ':
'_main_ ', '_doc_ ': None}

m

Python Shell/Editor - the tastiest Python editor.

When a Python file, for example a fitting model, is created or loaded with the New or Open options from the menu,
a new tab opens with an editing notebook.
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€ Python Shell/Editor
File Edit View Run Options Help

*Shell* | polynomials.py --

(= =@ ]=]

nen

Te=st plug-in model

nen

nen

These are links of available functions:

http://docs.python.org/library/math.html
http://www.scipy.org/Numpy Functions by Category

m

FE AERRRRR AR

Please select| Info
Note that we

Octherwise, if
## R R R R R A
nnn Success:
from sas.modd
Ig([ 0.01
Igxy ([ 0.01
1.104598756]

import
import
import
import

0.1 1)y =1
L0101, I

tRunning model 'polynomials.py'...

0.2 1.1]
0.1 0.1]) = [ 1.10498756

o

o

name = "M

def init (self): ¥

nen

class Model (ModellDPFlugin): 5D

4 | 1

HA B HTS

##¥Y0U CAN BE MODIFY ANYTHING BETWEEN »©w »ww
##DESCRIPTICN OF MODEL PLUG-IN GOES HERE

##EXAMPLE: Class that evaluates a polynomial model.

File: C:\Users\smk78%sasview\plugin_models\polynomials.py | Line:1 | Column: 0

If a Python (.py) model has a linked C (.c) subroutine in the same folder then the shell/editor will open both!
However input focus is usually transferred to the tab with the .c file.

To compile a model, select Run > Check Model from the shell/editor menu. If the model contains a unit test (which
it should!!!) then this will also run and a popup window will report the success/failure of the test.

Note: This help document was last changed by Steve King, 100ct2015

1.4.9 Image Viewer Tool

Description

This tool loads image files and displays them as 2D (x-y coordinate against counts per pixel). The plot can then
can be saved, printed, and copied. The plot can also be resized by dragging the corner of the panel.

The supported input image formats are:

¢ BMP (bitmap format)

 GIF (graphical interchange format)

* JPG (joint photographic experts group format)

* PNG (portable network graphics format)
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* TIF (tagged image format)

Using the tool

1. Select Image Viewer from the Tool menu on the SasView toolbar.

2. Select a file and then click Open. If the loading is successful the image will be displayed.

© Image Viewer: Choose an image file X
“ v NP « test > image_data v O Search image_data R |
— i
Organize v New folder = v [H o r
|2] Documents * A
L Google Drive g [
v‘ Downloads »
&= Pictures »
1d_data ISIS_98940_greysc IS15_98940_greysc 1SIS_98940_greysc
Downloads ale_bmp.bmp ale_gif.gif ale_jpg.jpg
Liliana pn
RSI2017Richards
7@ OneDrive
[ This PC 1S1S_98940_greysc ISIS_98940_greysc
B Desktop ale_png.png ale_tif.tif
| Documents v
File pame: ~| |lmages (".bmp;*.gif;*jpeg,*jpg;’ v
Images (*.bmp;*.gif:*jpeq,*ipg:*.png: tif:*.ti
Bitmap (*.bmp)
- GIF (*.gif)
Moo | ::Iﬁg ("Jpg:"jpeg)
oad Data e (".png)
_ Set Weighting by|ce - vt~ tif)
Delete Data @® No Weighting Al Files (*.%)

3. To save, print, or copy the image, or to apply a grid overlay, right-click anywhere in the plot.
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© Picture -- ISIS_98940_greyscale_tif.tif -- — O X

File Edit Image Help
Convert to Data

300
250
— 200
v ST
E Save Image
> 150 ?
Print Image
.'T.::,"".‘ cop)’ to Cllpboard
100 N
- Toggle Grid On/Off

50

(] 4 .
r_.’_ ,‘ -
' -..A}_-.J{

' L]
0 50 100

- }"
d i; h ‘
150 200 250 300
x [pixel]

4. If the image is taken from a 2D detector, SasView can attempt to convert the colour/grey scale into pseudo-
intensity 2D data using

z=(0.299 xR) + (0.587 x G) + (0.114 x B)
unless the image is formatted as 8-bit grey-scale TIF.

5. In the Convert to Data dialog, set the parameters relevant to the data and then click the OK.

Convert Image to Data - 1515 98340 _greyscale_tif tif -

Transform Axes

>
x values from pivel # to:  xmin: pink e
y values from pixel #to:  ymin: LIRS

zvalues (range: 0 - 255) to: z™ | 1.0

The data rescaled will show up in the Data Explaorer, oK

*Mote: Recornmend to use an image with & bit Grey
scale (and with Mo, of pixels < 300 x 300).
Otherwise, z = 0.299R + 0.587G + 0.114E. Cancel

Note: This help document was last changed by Steve King, 01May2015
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1.4.10 File Converter Tool

Description

This tool converts file formats with the Q data and Intensity data stored in separate files, into a single CanSAS
(XML) or NXcanSAS (HDF5) file.

It can also convert 2D BSL/OTOKO files into a NXcanSAS file.

Supported input file formats (examples may be found in the /test/convertible_files folder):

* Single-column ASCII data, with lines that end without any delimiter, or with a comma or semi-colon de-
limiter

* 2D ISIS ASCII formatted data

e 1D BSL/OTOKO format data

» 2D BSL/OTOKO format data
Supported output file formats:

e CanSAS

* NXcanSAS

Using the Tool

1. Select the files containing your Q-axis and Intensity-axis data

2. Choose whether the files are in ASCII 1D, ASCII 2D, 1D BSL/OTOKO or 2D BSL/OTOKO format
3. Choose where you would like to save the converted file

4. Optionally, input some metadata such as sample size, detector name, etc

5. Click Convert to save the converted file

Files With Multiple Frames

If a BSL/OTOKO file with multiple frames is selected for the Intensity-axis file, a dialog will appear asking which
frames you would like converted. You may enter a start frame, end frame & increment, and all frames in that
subset will be converted. For example, entering 0, 50 and 10 will convert frames 0, 10, 20, 30, 40 & 50.

To convert a single frame, enter the same value for first frame & last frame, and 1 as the increment.

CanSAS XML files can become quite large when exporting multiple frames to a single file, so there is an option
in the Select Frame dialog to output each frame to its own file. The single file option will produce one file with
multiple <SASdata> elements. The multiple file option will output a separate file with one <SASdata> element
for each frame. The frame number will also be appended to the file name.

The multiple file option is not available when exporting to NXcanSAS because the HDF5 format is more efficient
at handling large amounts of data.

Note: This help document was last changed by Steve King, 080ct2016

1.5 Working with SasView

Note: In Windows use [Alt]-[Cursor left] to return to the previous page
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1.5.1 Data Formats

SasView reads several different 1D SAS (/(Q) vs Q), 2D SAS(I(Qx,Qy) vs (Qx,Qy)) and 1D SESANS (P(z) vs
z) data files. From SasView 4.1 onwards, a File Converter Tool allows some legacy formats to be converted into
modern formats that SasView will read.

1D SAS Formats

SasView will read ASCII (‘text’) files with 2 to 4 columns of numbers in the following order:
0 1(Q), (dI(Q), dO(Q) )

where dQ(Q) is the instrumental resolution in Q and assumed to have originated from pinhole geometry.
Numbers can be separated by spaces or commas.
SasView recognises the following file extensions which are not case-sensitive:

« TXT

* .DAT

e XML (in canSAS format v1.0 and 1.1)

e H5 (as NeXus NXcanSAS only)

e NXS (as NeXus NXcanSAS only)

Note: From SasView version 4.2 onwards files written in the NIST .ASC format are no longer read. This is
because that format normally represents raw and not reduced data.

If using CSV output from, for example, a spreadsheet, ensure that it is not using commas as delimiters for thou-
sands.

The SasView File Converter Tool available in SasView 4.1 onwards can be used to convert data sets with separated
I(Q) and Q files (for example, BSL/OTOKO, and some output from FIT2D and other SAXS-oriented software)
into either the canSAS SASXML (XML) format or the NeXus NXcanSAS (HDF5) format.

For a description of the CanSAS/SASXML format see: http://www.cansas.org/formats/canSAS1d/1.1/doc/

For a  description of the ISIS ID  format  see: https://www.isis.stfc.ac.uk/Pages/
colette-ascii-file-format-descriptions.pdf

For a description of the NXcanSAS format see: http://cansas-org.github.io/NXcanSAS/classes/contributed_
definitions/NXcanSAS.html

All the above formats are written by the Mantid Framework.
For a description of the NIST 1D format see: http://danse.chem.utk.edu/trac/wiki/NCNROutput1 D_IQ

For a description of the BSL/OTOKO format see: http://www.diamond.ac.uk/Beamlines/Soft-Condensed-Matter/
small-angle/SAXS-Software/CCP13/BSL.html

2D SAS Formats

SasView will read ASCII (‘text’) files in the NIST 2D format (with the extension .DAT) or files in the NeXus
NXcanSAS (HDF5) format (with the extension .H5 or .NXS). File extensions are not case-sensitive. Both of these
formats are written by the Mantid Framework.

Most of the header lines in the NIST 2D format can actually be removed except the last line, and only the first
three columns (Qx, Qy, and I(Qx,Qy)) are actually required.
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Note: From SasView version 4.2 onwards files written in the NIST .ASC format are no longer read. This is
because that format normally represents raw and not reduced data.

Note: SasView does not read the standard NeXus format, only the NXcanSAS subset.

The SasView File Converter Tool available in SasView 4.1 onwards can be used to convert data sets in the 2D
BSL/OTOKO format into the NeXus NXcanSAS (HDF5) format.

For a description of the NIST 2D format see: http://danse.chem.utk.edu/trac/wiki/NCNROutput! D_2DQxQy

For a description of the NXcanSAS format see: http://cansas-org.github.io/NXcanSAS/classes/contributed_
definitions/NXcanSAS.html

For a description of the BSL/OTOKO format see: For a description of the BSL/OTOKO format see: http://www.
diamond.ac.uk/Beamlines/Soft-Condensed-Matter/small-angle/SAXS-Software/CCP13/BSL.html

1D SESANS Format
SasView version 4.1 onwards will read ASCII (‘text’) files in a prototype SESANS standard format (with the
extensions .SES or .SESANS). The file extensions are not case-sensitive.

The file format has a list of name-value pairs at the top of the file which detail the general experimental parameters
necessary for fitting and analyzing data. This list should contain all the information necessary for the file to be
‘portable’ between users.

Following the header is a 8 (only the first 4 are really needed) column list of instrument experimental variables:
 Spin echo length (z, in Angstroms)
* depolarization (log(P/Py)/(lambda?® * thickness), in Angstrom "' cm 1)
* depolarization error in the same unit) (measurement error)
* Spin echo length error (Az, in Angstroms) (experimental resolution)
* Neutron wavelength (), in Angstroms)
¢ Neutron wavelength error (A ), in Angstroms)
* Normalized polarization (P/ P, unitless)

* Normalized polarization error (A(P/P,), unitless) (measurement error)

Note: This help document was last changed by Wim Bouwman, 05Apr2017

1.5.2 Loading Data

The data explorer

Data Explorer is a panel that allows the user more interactions with data. Some functionalities provided by the
Data Explorer are also available through the context menu of plot panels or other menus within the application.

Under View in the menu bar, Data Explorer can be toggled between Show and Hide by clicking Show/Hide Data
Explorer.

NOTE! When Data Explorer is hidden, all data loaded will be sent directly to the current active analysis, if
possible. When Data Explorer is shown, data go first to the Data Explorer.
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Loading data

To load data, do one of the following:
Select File -> Load Data File(s), and navigate to your data;
Select File -> Load Data Folder, which will attempt to load all the data in the specified folder;

Or, in the Data Explorer click the button Load Data, then select one or more (by holding down the Ctrl key) files
to load into SasView.

The name of each loaded file will be listed in the Data Explorer. Clicking the + symbol alongside will display
any available metadata read from the file.

The handy menu

Right-clicking on a loaded dataset (or model calculation, what SasView calls a ‘theory’) brings up a Handy Menu
from which it is possible to access Data Info, Save the data/theory, or Plot the data/theory.

Data .
ata Explorer it
Selection Options L
I
| Select all Data -
§
Data
= latex_smeared_out.xml
Info M
THEORIES @
[
] Res Data Info |
Save As ]
J r Quick Plot :
Theory Quick 3DPlot (Slow)
] M1 IS¢ Edit Mask "
o T L T T £ T RS T B I 3 =TT IF

Activating data

To interact with data it must be activated. This is accomplished by checking the box next to the file name in the
Data Explorer. A green tick will appear.

Unchecking/unticking a box deactivates that data set.

There is also a combo box labeled Selection Options from which you can activate or deactivate multiple data sets
in one go.

Removing data

WARNING! Remove Data will stop any data operations currently using the selected data sets.

Remove Data removes all references to selected data from SasView.
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Creating a new plot

Click on the New Plot button to create a new plot panel where the currently selected data will be plotted.

Appending plots to a graph

This operation can currently only be performed on 1D data and plot panels containing 1D data.

Click on the button Append Plot To to add selected data to a plot panel. Next to the button is a combo box
containing the names of available plot panels. Selecting a name from this combo box will move that plot into
focus.

If a plot panel is not available, the combo box and button will be disabled.

2D Data cannot be appended to any plot panels.

Freezing the theory

The Freeze Theory button generates data from the selected theory.

NOTE! This operation can only be performed when theory labels are selected in the Data panel.

Sending data to applications

Click on the Send To button to send the currently selected data to one of the available types of analysis (Fitting,
P(r) Inversion, or Invariant calculation).

The Single/Batch mode radio buttons only apply to Fitting.

Batch mode provides serial (batch) fitting with one model function, that is, fitting one data set followed by another.
If several data sets need to be fitted at the same time, use Simultaneous fitting under the Fitting option on the menu
bar.

Note: This help document was last changed by Steve King, 01May2015

1.5.3 Plotting Data/Models
SasView generates three different types of graph window: one that displays /D data (i.e., I(Q) vs Q), one that

displays 1D residuals (ie, the difference between the experimental data and the theory at the same @ values), and
2D color maps.

Graph window options
Invoking the graph menu

To invoke the Graph Menu simply right-click on a data/theory plot, or click the Graph Menu (bullet list) icon in
the toolbar at the bottom of the plot. Then select a menu item.

How to Hide-Show-Delete a graph

To expand a plot window, click the Maximise (square) icon in the top-right corner.
To shrink a plot window, click the Restore down (square-on-square) icon in the top-right corner.

To hide a plot, click the Minimise (-) icon in the top-right corner of the plot window.
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To show a hidden plot, select the Restore up (square-on-square) icon on the minimised window.

To delete a plot, click the Close (x) icon in the top-right corner of the plot window.

Note: If a residuals graph (when fitting data) is hidden, it will not show up after computation.

Dragging a plot

Select the Pan (crossed arrows) icon in the toolbar at the bottom of the plot to activate this option. Move the mouse
pointer to the plot. It will change to a hand. Then left-click and drag the plot around. The axis values will adjust
accordingly.

To disable dragging mode, unselect the crossed arrows icon on the toolbar.

Zooming In-Out on a plot

Select the Zoom (magnifying glass) button in the toolbar at the bottom of the plot to activate this option. Move the
mouse pointer to the plot. It will change to a cross-hair. Then left-click and drag the pointer around to generate a
region of interest. Release the mouse button to generate the new view.

To disable zoom mode, unselect the Zoom button on the toolbar.

After zooming in on a a region, the left arrow or right arrow buttons on the toolbar will switch between recent
views.

The axis range can also be specified manually. To do so go to the Graph Menu (see Invoking_the_graph_menu for
further details), choose the Set Graph Range option and enter the limits in the pop box.

NOTE! If a wheel mouse is available scrolling the wheel will zoom in/out on the current plot (changing both axes).
Alternatively, point at the numbers on one axis and scroll the wheel to zoom in/out on just that axis.

To return to the original view of the data, click the the Reset (home) icon in the toolbar at the bottom of the plot
(see Resetting_the_graph for further details).

Saving a plot image

To save the current plot as an image file, right click on the plot to bring up the Graph Menu (see Invok-
ing_the_graph_menu) and select Save Image. Alternatively, click on the Save (floppy disk) icon in the toolbar
at the bottom of the plot.

A dialog window will open. Select a folder, enter a filename, choose an output image type, and click Save.
The currently supported image types are:

* EPS (encapsulated postscript)

¢ EMF (enhanced metafile)

» JPG/JPEG (joint photographics experts group)

* PDF (portable documant format)

* PNG (portable network graphics)

* PS (postscript)

* RAW/RGBA (bitmap, stored as 935x635 pixels of depth 8)

* SVG/SVGA (scalable vector graphics)

» TIF/TIFF (tagged iamge file)

250 Chapter 1. SasView User Documentation



SasView Documentation, Release 4.2.2

Printing a plot

To send the current plot to a printer, click on the Print (printer) icon in the toolbar at the bottom of the plot.

Resetting the graph

To reset the axis range of a graph to its initial values select Reset Graph Range on the Graph Menu (see Invok-
ing_the_graph_menu). Alternatively, use the Reset (home) icon in the toolbar at the bottom of the plot.

Modifying the graph

It is possible to make custom modifications to plots including:
* changing the plot window title
* changing the default legend location and toggling it on/off
* changing the axis label text
* changing the axis label units
* changing the axis label font & font colour
 adding/removing a text string
¢ adding a grid overlay
The legend and text strings can be drag and dropped around the plot

These options are accessed through the Graph Menu (see Invoking_the_graph_menu) and selecting Modify Graph
Appearance (for axis labels, grid overlay and legend position) or Add Text to add textual annotations, selecting
font, color, style and size. Remove Text will remove the last annotation added. To change the legend. Window Title
allows a custom title to be entered instead of Graph x.

Changing scales

This menu option is only available with 1D data.

From the Graph Menu (see Invoking_the_graph_menu) select Change Scale. A dialog window will appear in
which it is possible to choose different transformations of the x (usually Q) or y (usually I(Q)) axes, including:

e X, x"2, xM, In(x), log10(x), log10(x"4)
* ¥, Iy, In(y), y*2, y.(x"), 1/sqrt(y),
e logl0(y), In(y.x), In(y.x"2), In(y.x*4), log10(y.x"4)
A View option includes short-cuts to common SAS transformations, such as:
* linear
* Guinier
* X-sectional Guinier
* Porod
* Kratky

For properly corrected and scaled data, these SAS transformations can be used to estimate, for example, Rg, rod
diameter, or SANS incoherent background levels, via a linear fit (see Making_a_linear_fit).
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Toggling scales

This menu option is only available with 2D data.

From the Graph Menu (see Invoking_the_graph_menu) select Toggle Linear/Log Scale to switch between a linear
to log intensity scale. The type of scale selected is written alongside the colour scale.

2D color maps

This menu option is only available with 2D data.

From the Graph Menu (see Invoking_the_graph_menu) select 2D Color Map to choose a different color scale for
the image and/or change the maximum or minimum limits of the scale.

Getting data coordinates

Clicking anywhere in the plot window will cause the current coordinates to be displayed in the status bar at the
very bottom-left of the SasView window.

Dataset menu options

Invoking the dataset menu

From the Graph Menu (see Invoking_the_graph_menu) highlight a plotted dataset.

Getting data info

In the Dataset Menu (see Invoking_the_dataset_menu), highlight a data set and select Datalnfo to bring up a data
information dialog panel for that data set.

Saving data

In the Dataset Menu (see Invoking_the_dataset_menu), select Save Points as a File (if 1D data) or Save as a
file(DAT) (if 2D data). A save dialog will appear.

1D data can be saved in either ASCII text (.TXT) or CanSAS/SASXML (. XML) formats (see Data Formats).
2D data can only be saved in the NIST 2D format (.DAT) (see Data Formats).

Making a linear fit

Linear fit performs a simple y(x) = ax + b linear fit within the plot window.

In the Dataset Menu (see Invoking_the_dataset_menu), select Linear Fit. A fitting dialog will appear. Set some
initial parameters and data limits and click Fit. The fitted parameter values are displayed and the resulting line
calculated from them is added to the plot.

This option is most useful for performing simple Guinier, XS Guinier, and Porod type analyses, for example, to
estimate Ry, a rod diameter, or incoherent background level, respectively.

The following figure shows an example of a Guinier analysis using this option
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Linear Fit bt |

WARNING! Resolution is NOT accounted for.
Thus slit smeared data will give very wrong answers!

Perform fit fory(x) = ax + b

Parameter a | -79.5 | +/- 145

Parameter b | 217 | +/- [ 0.00811

Chi2/dof 0.159

Min Max
Maximum range (linear scale) ’ 0 ‘ [ 0.0565
Fit range of x(2) [o |  [0.00319
I(g=0) [8.79 | +/-[ 00713
Rg[A] (154 | +/- [0a37
Rg*Qmin [ 0
I Rg"Qmax (0872

Removing data from the plot

In the Dataset Menu (see Invoking_the_dataset_menu), select Remove. The selected data will be removed from
the plot.

Note: The Remove data set action cannot be undone.

Show-Hide error bars

In the Dataset Menu (see Invoking_the_dataset_menu), select Show Error Bar or Hide Error Bar to switch be-
tween showing/hiding the errors associated with the chosen dataset.

Modify plot properties

In the Dataset Menu (see Invoking_the_dataset_menu), select Modify Plot Property to change the size, color, or
shape of the displayed marker for the chosen dataset, or to change the dataset label that appears in the plot legend
box.

2D data averaging

Purpose

This feature is only available with 2D data.

2D data averaging allows you to perform different types of averages on your data. The region to be averaged is
displayed in the plot window and its limits can be modified by dragging the boundaries around.
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How to average

In the Dataset Menu (see Invoking_the_dataset_menu), select one of the following averages
 Perform Circular Average
¢ Sector [Q view]
¢ Annulus [Phi view]
* Box sum
* Box averaging in Qx
* Box averaging on Qy

A ‘slicer’ will appear (except for Perform Circular Average) in the plot that you can drag by clicking on a slicer’s
handle. When the handle is highlighted in red, it means that the slicer can move/change size.

NOTE! The slicer size will reset if you try to select a region greater than the size of the data.

Alternatively, once a ‘slicer’ is active you can also select the region to average by bringing back the Dataset Menu
and selecting Edit Slicer Parameters and Batch Fitting. A dialog window will appear in which you can enter
values to define a region, select the number of points to plot (nbins), or apply the slicer to any or all other 2D data
plots.

A separate plot window will also have appeared, displaying the requested average.

Note: The displayed average only updates when input focus is moved back to that window; ie, when the mouse
pointer is moved onto that plot.

Selecting Box Sum automatically brings up the ‘Slicer Parameters’ dialog in order to display the average numeri-
cally, rather than graphically.

To remove a ‘slicer’, bring back the Dataset menu and select Clear Slicer.

Batch Slicing

A slicer can be applied to any or all existing 2D data plots using the ‘Slicer Parameters’ window. To open the
window, select Edit Slicer Parameters and Batch Fitting in the Dataset Menu (see Invoking_the_dataset_menu).
Batch slicing options are available at the bottom of the window.

Select the 2D plots you want to apply the slicer to. All 2D plots are selected by default. The resulting 1D data for
all slicers can be saved as a text file and then sent to fitting by selecting the Auto save generated 1D check box.
Sending data to the fitting perspective requires the data be saved.

Once the auto save check box is selected, you can select where the files are saved. The file name for the saved
data is the slicer name plus the file name of the original data set, plus what is in the Append to file name field. The
default value in the append to field includes the names and values for all of the slicer parameters.

The batch of slices can be sent to fitting if desired, with three options available. The first is to not fit the data,
the second is to send the slices to individual fit pages, and the third is to send all sliced data to a single batch fit
window.

Clicking Apply Slicer to Selected Plots will create a slicer for each selected plot with the parameters entered in
the ‘Slicer Parameters’ window. Depending on the options selected the data may then be saved, loaded as separate
data sets in the data manager panel, and finally sent to fitting.

Unmasked circular average

This operation will perform an average in constant () rings around the (x,y) pixel location of the beam center.
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Masked circular average

This operation is the same as ‘Unmasked Circular Average’ except that any masked region is excluded.

Sector average [Q View]

This operation averages in constant () arcs.

The width of the sector is specified in degrees (+4|¢|) each side of the central angle ¢.

Annular average [¢]

This operation performs an average between two ( values centered on (0,0), and averaged over a specified number
of pixels.

The data is returned as a function of angle ¢ in degrees with zero degrees at the 3 O’clock position.

Box sum

This operation performs a sum of counts in a 2D region of interest.

When editing the slicer parameters, the user can enter the length and the width the rectangular slicer and the
coordinates of the center of the rectangle.

Box Averaging in Qx

This operation computes an average I (), ) for the region of interest.

When editing the slicer parameters, the user can control the length and the width the rectangular slicer. The
averaged output is calculated from constant bins with rectangular shape. The resultant () values are nominal
values, that is, the central value of each bin on the x-axis.

Box Averaging in Qy

This operation computes an average I(Q),,) for the region of interest.

When editing the slicer parameters, the user can control the length and the width the rectangular slicer. The
averaged output is calculated from constant bins with rectangular shape. The resultant () values are nominal
values, that is, the central value of each bin on the x-axis.

Note: This help document was last modified by Paul Butler, 05 September, 2016

1.5.4 Test Data
Test data sets are included as a convenience to our users. Look in the test sub-folder in your SasView installation
folder.
The test data sets are organized based on their data structure:
* ID data
* convertible 1D data files
* 2D data
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e coordinate data
* image data

SESANS data

* save states

* upcoming formats

1D Data

1D data sets EITHER have:

* at least two columns of data with I(Q) (assumed to be in absolute units) on the y-axis and Q on the x-axis.
And additional columns of data may carry uncertainty data, resolution data, or other metadata.

OR:
¢ the I(Q) and Q data in separate files with no other information.

Data in the latter format need to be converted to a single file format with the File Converter Tool before they can
be analysed in SasView. Test files are located in the /convertible_files folder.

1D Test Data

33837rear_1D_1.75_16.5

* Data from a magnetically-oriented surfactant liquid crystal output by the Mantid framework. The data
was collected on the SANS2D instrument at ISIS.

10wtAOT_Reline_120_reduced / Anton-Paar / saxsess_example
¢ Data from Anton-Paar SAXSess instruments saved in Otto Glatter’s PDH format.
AOT_Microemulsion

¢ Aerosol-OT surfactant stabilised oil-in-water microemulsion data at three contrasts: core (oil core),
drop (oil core + surfactant layer), and shell (surfactant layer).

* Suitable for testing simultaneous fitting.

APS_DND-CAT
¢ ASCII data from the DND-CAT beamline at the APS.
hSDS_D20

* h25-sodium dodecyl sulphate solutions at two concentrations: 0.5wt% (just above the cmc), 2wt%
(well above the cmc), and 2wt% but with 0.2mM NaCl electrolyte.

* Suitable for testing charged S(Q) models.
ISIS_83404 / ISIS_98929

» Polyamide-6 fibres hydrated in D20 exhibiting a broad lamellar peak from the semi-crystalline nanos-
tructure.

e This is the same data as that in the BSL/OTOKO Z8300* / Z9800* files but in an amalgamated ASCII
format!

* Suitable for testing Correlation Function Analysis .

ISIS_Polymer_Blend_TK49
* Monodisperse (Mw/Mn~1.02) 49wt% d8-polystyrene : 51wt% h8-polystyrene polymer blend.
* Suitable for testing Poly_GaussCoil and RPA10 models.

P123_D20
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* Lyotropic liquid crystalline solutions of non-ionic ABA block copolymer Pluronic P123 in water at
three concentrations: 10wt%, 30wt%, and 40wt%.

* Suitable for testing paracrystal models.

Convertible 1D Data

APS_X/APS_Y
* ASCII data output by a reduction software package at the APS.
¢ Suitable for testing the File Converter Tool .
FIT2D_I/FIT2D_Q
* ASCII data output by the FIT2D software package at the ESRF.
* Suitable for testing the File Converter Tool .
78300*.11D / Z8300%.QAX / Z9800*.11D / Z9800*.QAX

¢ BSL/OTOKO data from polyamide-6 fibres hydrated in D20 exhibiting a broad lamellar peak from
the semi-crystalline nanostructure.

* This is the same data as that in ISIS_83404 / ISIS_98929 but in an older separated format!
e Suitable for testing the File Converter Tool .

* Suitable for testing Correlation Function Analysis .

2D Data

2D data sets are data sets that give the reduced intensity for each Qx-Qy bin. Depending on the file format,
uncertainty data and metadata may also be available.

2D Test Data

33837rear_2D_1.75_16.5

* Data from a magnetically-oriented surfactant liquid crystal output by the Mantid framework. The data
was collected on the SANS2D instrument at ISIS.

P123_D20

* Lyotropic liquid crystalline solutions of non-ionic ABA block copolymer Pluronic P123 in water at
three concentrations: 10wt%, 30wt%, and 40wt%.

* Suitable for testing paracrystal models.

Coordinate Data

Coordinate data sets, such as PDB or OMF files, and which describe a specific structure, are designed to be read
and viewed in the Generic SANS Calculator Tool .

Coordinate Test Data

A_Raw_Example-1
¢ OMF format data file from a simulation of magnetic spheres.
diamond

¢ PDB format data file for diamond.
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dna

* PDB format data file for DNA.
sld_file

* Example SLD format data file.

Image Data

Image data sets are designed to be read by the Image Viewer Tool . They can be converted into synthetic 2D data.

Image Test Data

ISIS_98940

* Polyamide-6 fibres hydrated in D20 exhibiting a broad lamellar peak from the semi-crystalline nanos-
tructure.

» Data is presented in Windows Bitmap (BMP), GIF, JPEG (JPG), PNG, and TIFF (TIF) formats.

SESANS Data

SESANS (Spin-Echo SANS) data sets primarily contain the neutron polarisation as a function of the spin-echo
length. Also see SANS to SESANS conversion .

SESANS Test Data

spheres2micron

* SESANS data from 2 micron polystyrene spheres in 53% H20 / 47% D20.

Save States

Saved states are projects and analyses saved by the SasView program. A single analysis file contains the data and
parameters for a single fit (.fit), p(r) inversion (.prv), or invariant calculation (.inv). A project file (.svs) contains
the results for every active analysis in a SasView session.

Saved State Test Data

fitstate.fitv

* asaved fitting analysis.
test.inv

* asaved invariant analysis.
test002.inv

¢ asaved invariant analysis.
prstate.prv

* asaved P(r) analysis.
newone.svs

* asaved SasView project.
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Upcoming Formats

Data in this folder are in formats that are not yet implemented in SasView but which might be in future versions
of the program.

Other Test Data

phi_weights.txt
radius_dist.txt

THETA_weights.txt

Note: This help document was last changed by Steve King, 060ct2016

1.5.5 Tutorials

Note: In Windows use [Alt]-[Cursor left] to return to the previous page

The following tutorial was written for Version 2.x but is still a useful overview of much of the analysis capability
in SasView (but disregard Appendix XIII if using Version 4.2 or later)

0ld Tutorial

The following tutorials have been written for Version 4.x
Getting Started with Sasview

Basic 1D Fitting in Sasview
Simultaneous 1D Fitting in Sasview

Correlation Function Analysis in SasView

1.5.6 Environment Variables

SasView creates and uses a number of environment variables:
¢ SAS_MODELPATH=path
— sets the directory containing custom models

SAS_DLL_PATH=path

— sets the path to the compiled modules

SAS_WEIGHTS_PATH=~/.sasview/weights

— sets the path to custom distribution files (see Polydispersity & Orientational Distributions)

XDG_CACHE_HOME=~/.cache

— sets the pyopencl cache root (linux only)
— defined in the appdirs package
SAS_COMPILER=tinycclmsvclmingwlunix

— sets the DLL compiler
SAS_OPENCL=vendor:devicelnone

— sets the target OpenCL device for GPU computations
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— use none to disable
* SAS_OPENMP=110
— turns on/off OpenMP multi-processing of the DLLs

Document History

2018-07-20 Steve King

1.5.7 Model Marketplace

The Model Marketplace allows members of the SAS Community to contribute plug-in fitting models for SasView
for all to use.

Note: These plug-in models require SasView version 4.0 or later. However, not all models may work with every
version of SasView because of changes to our API.

Contributed models should be written in Python (only version 2.7.x is currently supported) or, if computational
speed is an issue, in a combination of Python and C. You only need to upload the .py/.c source code files to the
Marketplace!

Please put a comment in your code to indicate which version of SasView you wrote the model for.

For guidance on how to write a plugin model see Writing a Plugin Model . It may also be helpful to examine the
library models in the /sasmodels-data/models sub-folder of your SasView installation directory.

The Marketplace also provides the option to upload a SasView text file of the scattering function data computed
by your model. If you do this a graph of the scattering function will appear under the Marketplace entry for your
model.

Note: The SasView Development Team regret to say that they do not have the resources to fix the bugs or polish
the code in every model contributed to the Marketplace!
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Note: In Windows use [Alt]-[Cursor left] to return to the previous page

2.1 Contents

2.1.1 SasView

sas package

Subpackages

sas.sascalc package

Subpackages

sas.sascalc.calculator package

Submodules
sas.sascalc.calculator.BaseComponent module

Provide base functionality for all model components

class sas.sascalc.calculator.BaseComponent .BaseComponent
Basic model component

Since version 0.5.0, basic operations are no longer supported.

calculate ER()
Calculate effective radius

calculate_VR()
Calculate volume fraction ratio

clone ()
Returns a new object identical to the current object

evalDistribution (gdist)
Evaluate a distribution of g-values.

* For 1D, a numpy array is expected as input:

evalDistribution (q)
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where q is a numpy array.

 For 2D, a list of numpy arrays are expected: [qx_prime,qy_prime], where 1D arrays,

’qx_prime = [ gx[0], gx[1], ax[2], ....]

and

’qy_prime = [ qyl0l, ayll], aqyl[2], ....]
Then get

’q = np.sqrt (gx_prime”2+qy_prime”2)

that is a qr in 1D array;

Note: Due to 2D speed issue, no anisotropic scattering is supported for python models, thus C-models
should have their own evalDistribution methods.

The method is then called the following way:

evalDistribution (q)

where q is a numpy array.
Parameters gdist —ndarray of scalar g-values or list [qx,qy] where qx,qy are 1D ndarrays

getDispParamList ()
Return a list of all available parameters for the model

getParam (name)
Set the value of a model parameter :param name: name of the parameter

getParamList ()
Return a list of all available parameters for the model

getParamListWithToken (token, member)
get Param List With Token

getParamWithToken (name, token, member)
get Param With Token

getProfile ()
Get SLD profile

: return: (z, beta) where z is a list of depth of the transition points beta is a list of the correspond-
ing SLD values

is_fittable (par_name)
Check if a given parameter is fittable or not

Parameters par_name — the parameter name to check

run (x)
run 1d

runXY (x)
run 2d

setParam (name, value)
Set the value of a model parameter

Parameters
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* name — name of the parameter
* value - value of the parameter

setParamWithToken (name, value, token, member)
set Param With Token

set_dispersion (parameter, dispersion)
model dispersions

sas.sascalc.calculator.instrument module

This module is a small tool to allow user to control instrumental parameters

class sas.sascalc.calculator.instrument.Aperture
Bases: object

An object class that defines the aperture variables

set_sample_distance (distance=[])
Set the sample aperture distance

set_sample_size (size=[])
Set the sample aperture size

set_source_size (size=/[])
Set the source aperture size

class sas.sascalc.calculator.instrument .Detector
Bases: object

An object class that defines the detector variables

set_distance (distance=[])
Set the detector distance

set_pix_size (size=[])
Set the detector pix_size

set_size (size=[])
Set the detector size

class sas.sascalc.calculator.instrument .Neutron
Bases: object

An object that defines the wavelength variables

get_band ()
To get the wavelength band

get_default_spectrum/()
get default spectrum

get_intensity ()
To get the value of intensity

get_mass ()
To get the neutron mass

get_ramdom_value ()
To get the value of wave length

get_spectrum ()
To get the wavelength spectrum

get_wavelength ()
To get the value of wavelength
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get_wavelength_spread()
To get the value of wavelength spread

plot_spectrum ()
To plot the wavelength spactrum : requirement: matplotlib.pyplot

set_band (band=[])
To set the wavelength band

Parameters band — array of [min, max]

set_full band()
set band to default value

set_intensity (intensity=368428)
Sets the intensity in counts/sec

set_mass (mass=1.67492729e-24)
Sets the wavelength

set_spectrum (spectrum)
Set spectrum

Parameters spectrum — numpy array

set_wavelength (wavelength=6.0)
Sets the wavelength

set_wavelength_spread (spread=0.125)
Sets the wavelength spread

setup_spectrum/()
To set the wavelength spectrum, and intensity, assumes wavelength is already within the spectrum

class sas.sascalc.calculator.instrument.Sample
Bases: object

An object class that defines the sample variables

set_distance (distance=[])
Set the sample distance

set_size (size=[])
Set the sample size

set_thickness (thickness=0.0)
Set the sample thickness

class sas.sascalc.calculator.instrument.TOF
Bases: sas.sascalc.calculator.instrument.Neutron

TOF: make list of wavelength and wave length spreads

get_intensity_list ()
get list of the intensity wrt wavelength_list

get_wave_list ()
Get wavelength and wavelength_spread list

set_wave_list (wavelength=[])
Set wavelength list

Parameters wavelength — list of wavelengths

set_wave_spread_list (wavelength_spread=[])
Set wavelength_spread list

Parameters wavelength_spread - list of wavelength spreads

sas.sascalc.calculator.instrument.validate (value=None)
Check if the value is folat > 0.0
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Return value True / False

sas.sascalc.calculator.kiessig_calculator module

This module is a small tool to allow user to quickly determine the size value in real space from the fringe width in
q space.

class sas.sascalc.calculator.kiessig_calculator.KiessigThicknessCalculator
Bases: object

compute thickness from the fringe width of data

compute_thickness ()
Calculate thickness.

Returns the thickness.

get_deltaq()
return deltaQ value in 1/A unit

get_thickness_unit ()
Returns the thickness unit.

set_deltaq (dg=None)
Receive deltaQ value

Parameters dq - q fringe width in 1/A unit

sas.sascalc.calculator.resolution_calculator module

This object is a small tool to allow user to quickly determine the variance in q from the instrumental parameters.

class sas.sascalc.calculator.resolution_calculator.ResolutionCalculator
Bases: object

compute resolution in 2D

compute (wavelength, wavelength_spread, gx_value, qy_value, coord="cartesian’, tof=False)
Compute the Q resoltuion in Il and + direction of 2D : gx_value: x component of q : qy_value: y
component of q

compute_and_plot (gx_value, gy_value, gx_min, gx_max, qy_min, qy_max, coord="cartesian’)
Compute the resolution : gx_value: x component of q : qy_value: y component of q

get_all_ instrument_ params ()
Get all instrumental parameters

get_default_spectrum/()
Get default_spectrum

get_detector_pix_size()
Get detector pixel size

get_detector_grange ()
get max detector q ranges

: return: qX_min, gx_max, qy_min, qy_max tuple

get_detector_size ()
Get detector size

get_image (gx_value, qy_value, sigma_l, sigma_2, sigma_r, gx_min, gx_max, qy_min, gy_max,
coord="cartesian’, full_cal=True)
Get the resolution in polar coordinate ready to plot : qx_value: qx_value value : qy_value: qy_value
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value : sigma_1: variance in r direction : sigma_2: variance in phi direction : coord: coordinate

system of image, ‘polar’ or ‘cartesian’

get_intensity ()
Get intensity

get_intensity list ()
Set wavelength spread

get_neutron_mass ()
Get Neutron mass

get_sample2detector_distance ()
Get detector sample2detector_distance

get_sample2sample_distance ()
Get detector sampleslitsample_distance

get_sample_ aperture_size ()
Get sample aperture size

get_source2sample_distance ()
Get detector source2sample_distance

get_source_aperture_size ()
Get source aperture size

get_spectrum/()
Get _spectrum

get_variance (size=[], distance=0, phi=0, comp="radial’)

Get the variance when the slit/pinhole size is given : size: list that can be one(diameter for circular)
or two components(lengths for rectangular) : distance: [z, x] where z along the incident beam, x //

LIS R )

gx_value : comp: direction of the sigma; can be ‘phi’, ‘y’, ‘x’, and ‘radial’
: return variance: sigma’*2

get_variance_gravity (s_distance, d_distance, wavelength, spread, phi, comp=’radial’,

] switch="on’) o
Get the variance from gravity when the wavelength spread is given

: s_distance: source to sample distance : d_distance: sample to detector distance : wavelength: wave-

(3]

length : spread: wavelength spread (ratio) : comp: direction of the sigma; can be ‘phi’, ‘y’, ‘x’, and

‘radial’
: return variance: sigma’2

get_variance_wave (A_value, radius, distance, spread, phi, comp="radial’, switch="on’)
Get the variance when the wavelength spread is given

: radius: the radial distance from the beam center to the pix of q : distance: sample to detector distance

LI B |

: spread: wavelength spread (ratio) : comp: direction of the sigma; can be ‘phi’, ‘y’, ‘x’, and ‘radial’

: return variance: sigma”?2 for 2d, sigma”2 for 1d [tuple]

get_wave_list ()
Set wavelength spread

get_wavelength ()
Get wavelength

get_wavelength_spread ()
Get wavelength spread

plot_image (image)
Plot image using pyplot : image: 2d resolution image

: return plt: pylab object
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reset_image ()
Reset image to default (=[])

set_detector_pix_size (size)
Set detector pixel size

set_detector size (size)
Set detector size in number of pixels : param size: [pixel_nums] or [x_pix_num, yX_pix_num]

set_intensity (intensity)
Set intensity

set_neutron_mass (mass)
Set Neutron mass

set_sample2detector_distance (distance)
Set detector sample2detector_distance

: param distance: [distance, x_offset]

set_sample2sample_distance (distance)
Set detector sample_slit2sample_distance

: param distance: [distance, x_offset]

set_sample_aperture_size (size)
Set sample aperture size

: param size: [dia_value] or [xheight_value, yheight_value]

set_source2sample_distance (distance)
Set detector source2sample_distance

: param distance: [distance, x_offset]

set_source_aperture_size (size)
Set source aperture size

: param size: [dia_value] or [x_value, y_value]

set_spectrum (spectrum)
Set spectrum

set_wave (wavelength)
Set wavelength list or wavelength

set_wave_list (wavelength_list, wavelengthspread_list)
Set wavelength and its spread list

set_wave_spread (wavelength_spread)
Set wavelength spread or wavelength spread

set_wavelength (wavelength)
Set wavelength

set_wavelength_spread (wavelength_spread)
Set wavelength spread

setup_tof (wavelength, wavelength_spread)
Setup all parameters in instrument

: param ind: index of lambda, etc

sas.sascalc.calculator.sas_gen module

SAS generic computation and sld file readers
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class sas.sascalc.calculator.sas_gen.GenSAS
Bases: sas.sascalc.calculator.BaseComponent.BaseComponent

Generic SAS computation Model based on sld (n & m) arrays

evalDistribution (gdist)
Evaluate a distribution of g-values.

Parameters gdist —ndarray of scalar g-values (for 1D) or list [qx,qy] where gx,qy are 1D
ndarrays (for 2D).

getProfile ()
Get SLD profile : return: sld_data

run (x=0.0)
Evaluate the model :param x: simple value :return: (I value)

runXY (x=0.0)
Evaluate the model :param x: simple value :return: I value :Use this runXY() for the computation

set_is_avg (is_avg=False)
Sets is_avg: [bool]

set_pixel_volumes (volume)
Set the volume of a pixel in (A”3) unit :Param volume: pixel volume [float]

set_sld_data (sld_data=None)
Sets sld_data

class sas.sascalc.calculator.sas_gen.MagSLD (pos_x, pos_y, pos_z, sld_n=None,
sld_mx=None, sld_my=None,

sld_mz=None, vol_pix=None)
Bases: object

Magnetic SLD.

get_sldn()
Returns nuclear sld

pos_x = None

pos_y None
pos_z = None

set_conect_lines (line_x, line_y, line_z)
Set bonding line data if taken from pdb

set_nodes ()
Set xnodes, ynodes, and znodes

set_pix_type (pix_type)
Set pixel type :Param pix_type: string, ‘pixel’ or ‘atom’

set_pixel_symbols (symbol="pixel’)
Set pixel :Params pixel: str; pixel or atomic symbol, or array of strings

set_pixel_volumes (vol)
Set pixel volumes :Params pixel: str; pixel or atomic symbol, or array of strings

set_sldms (sld_mx, sld_my, sld_mz)
Sets mx, my, mz and abs(m).

set_sldn (sld_n)
Sets neutron SLD

set_stepsize ()
Set xtepsize, ystepsize, and zstepsize

sld mx = None
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sld my None
sld mz = None
sld_n = None

class sas.sascalc.calculator.sas_gen.OMF2SLD
Bases: object

Convert OMFData to MAgData

get_magsld()
return MagSLD

get_omfdata ()
Return all data

get_output ()
Return output

remove_null_points (remove=False, recenter=False)
Removes any mx, my, and mz = 0 points

set_data (omfdata, shape="rectangular’)
Set all data

class sas.sascalc.calculator.sas_gen.OMFData
Bases: object

OMF Data.

set_m (mx, my, mz)
Set the Mx, My, Mz values

class sas.sascalc.calculator.sas_gen.OMFReader
Bases: object

Class to load omf/ascii files (3 columns w/header).
ext = ['.omf', '.OMF']

read (path)
Load data file :param path: file path :return: X, y, z, sld_n, sld_mx, sld_my, sld_mz

type = ['OMF files (*x.OMF, *.omf) |*x.omf']
type_name = 'OMF ASCII'

class sas.sascalc.calculator.sas_gen.PDBReader
Bases: object

PDB reader class: limited for reading the lines starting with ‘ATOM’
ext = ['.pdb', '.PDB']

read (path)
Load data file

Parameters path — file path

Returns MagSLD

Raises RuntimeError — when the file can’t be opened
type = ['pdb files (x.PDB, *.pdb) |*x.pdb']
type_name = 'PDB'

write (path, data)
Write

2.1. Contents

269



SasView Documentation, Release 4.2.2

class sas.sascalc.calculator.sas_gen.SLDReader
Bases: object

Class to load ascii files (7 columns).
ext = ['.sld', '.SLD', '.txt', '.TXT', '.x']

read (path)
Load data file :param path: file path :return MagSLD: X, y, z, sld_n, sld_mx, sld_my, sld_mz :raise
RuntimeError: when the file can’t be opened :raise ValueError: when the length of the data vectors are
inconsistent

type = ['sld files (%.SLD, *.sld)|*.sld', 'txt files (*.TXT, *.txt)|x.txt',6 'all fi.
type_name = 'SLD ASCII'

write (path, data)
Write sld file :Param path: file path :Param data: MagSLD data object

sas.sascalc.calculator.sas_gen.decode (s)

sas.sascalc.calculator.sas_gen.mag2sld (mag, v_unit=None)
Convert magnetization to magnatic SLD sldm = Dm * mag where Dm = gamma * classical elec. ra-
dius/(2*Bohr magneton) Dm ~ 2.853E-12 [A~(-2)] ==> Shouldn’t be 2.90636E-12 [A"(-2)]???

sas.sascalc.calculator.sas_gen.test ()
Test code

sas.sascalc.calculator.sas_gen.test_load()
Test code

sas.sascalc.calculator.sas_gen.test_save ()

sas.sascalc.calculator.sas_gen.transform center (pos_x, pos_y, pos_z)
re-center :return: posx, posy, posz [arrays]

sas.sascalc.calculator.slit_length_calculator module

This module is a small tool to allow user to quickly determine the slit length value of data.

class sas.sascalc.calculator.slit_length_calculator.SlitlengthCalculator
Bases: object

compute slit length from SAXSess beam profile (1st col. Q, 2nd col. I, and 3rd col. dI.: don’t need the
3rd)

calculate_slit_length(()
Calculate slit length.

Returns the slit length calculated value.
get_slit_length_unit ()

Returns the slit length unit.
set_data (x=None, y=None)

Receive two vector x, y and prepare the slit calculator for computation.

Parameters
* X — array
e y —array
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Module contents

sas.sascalc.corfunc package

Submodules
sas.sascalc.corfunc.corfunc_calculator module

This module implements corfunc

class sas.sascalc.corfunc.corfunc_calculator.CorfuncCalculator (data=None,
low-
erg=None,
up-
perq=None,
scale=1)
Bases: object

compute_background (upperg=None)
Compute the background level from the Porod region of the data

compute_extrapolation ()
Extrapolate and interpolate scattering data

Returns The extrapolated data

compute_transform (extrapolation, trans_type, background=None, completefni=None, up-

datefn=None)
Transform an extrapolated scattering curve into a correlation function.

Parameters
* extrapolation — The extrapolated data

* background — The background value (if not provided, previously calculated value
will be used)

* extrap_fn — A callable function representing the extraoplated data
* completefn — The function to call when the transform calculation is complete

* updatefn — The function to call to update the GUI with the status of the transform
calculation

Returns The transformed data

extract_parameters (transformed_data)
Extract the interesting measurements from a correlation function

Parameters transformed_data — Fourier transformation of the extrapolated data

set_data (data, scale=1)
Prepares the data for analysis

Returns new_data = data * scale - background
stop_transform()

transform_isrunning()
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sas.sascalc.corfunc.transform_thread module

class sas.sascalc.corfunc.transform thread.FourierThread (raw_data, extrap-
olated_data, bg,
updatefn=None,
completefn=None)

Bases: sas.sascalc.data util.calcthread.CalcThread
check_if cancelled()

compute ()

class sas.sascalc.corfunc.transform thread.HilbertThread (raw_data, extrap-
olated_data, bg,
updatefn=None,
completefn=None)
Bases: sas.sascalc.data util.calcthread.CalcThread

compute ()

Module contents

sas.sascalc.data_util package

Submodules

sas.sascalc.data_util.calcthread module

class sas.sascalc.data_util.calcthread.CalecCommandline (n=20000)

Test method

complete (fotal=0.0)

update (i=0)
class sas.sascalc.data_util.calcthread.CalecDemo (completefn=None, up-
datefn=None, yieldtime=0.01,
worktime=0.01, excep-

tion_handler=None)
Bases: sas.sascalc.data_util.calcthread.CalcThread

Example of a calculation thread.

compute (n)

class sas.sascalc.data_util.calcthread.CalecThread (completefn=None, up-
datefn=None, yieldtime=0.01,
worktime=0.01, excep-

tion_handler=None)
Threaded calculation class. Inherit from here and specialize the compute() method to perform the appropri-

ate operations for the class.

If you specialize the __init__ method be sure to call CalcThread.__init__, passing it the keyword arguments
for yieldtime, worktime, update and complete.

When defining the compute() method you need to include code which allows the GUI to run. They are as

follows:

self.isquit () # call frequently to check for interrupts
self.update (kw=...) # call when the GUI could be updated
self.complete (kw=...) # call before exiting compute ()
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The update() and complete() calls accept field=value keyword arguments which are passed to the called
function. complete() should be called before exiting the GUI function. A KeyboardInterrupt event is trig-
gered if the GUI signals that the computation should be halted.

The following documentation should be included in the description of the derived class.

The user of this class will call the following:

thread = Work(...,kw=...) prepare the work thread.
thread.queue(...,kw=...) queue a work unit

thread.requeue (..., kw=...) replace work unit on the end of queue
thread.reset (...,kw=...) reset the queue to the given work unit

thread.stop ()
thread.interrupt ()
thread.ready (delay=0.)
thread.isrunning/()

clear the queue and halt
halt the current work unit but continue
request an update signal after delay

H o HH R W R R W

returns true 1if compute() 1s running

Use queue() when all work must be done. Use requeue() when intermediate work items don’t need to be
done (e.g., in response to a mouse move event). Use reset() when the current item doesn’t need to be
completed before the new event (e.g., in response to a mouse release event). Use stop() to halt the current
and pending computations (e.g., in response to a stop button).

The methods queue(), requeue() and reset() are proxies for the compute() method in the subclass. Look there
for a description of the arguments. The compute() method can be called directly to run the computation in
the main thread, but it should not be called if isrunning() returns true.

The constructor accepts additional keywords yieldtime=0.01 and worktime=0.01 which determine the coop-
erative multitasking behaviour. Yield time is the duration of the sleep period required to give other processes
a chance to run. Work time is the duration between sleep periods.

Notifying the GUI thread of work in progress and work complete is done with updatefn=updatefn and
completefn=completefn arguments to the constructor. Details of the parameters to the functions depend
on the particular calculation class, but they will all be passed as keyword arguments. Details of how the
functions should be implemented vary from framework to framework.

For wx, something like the following is needed:

import wx, wx.lib.newevent
(CalcCompleteEvent, EVT_CALC_COMPLETE) = wx.lib.newevent.NewEvent ()

# methods in the main window class of your application
def  init__ ():

# Prepare the calculation in the GUI thread.
self.work = Work (completefn=self.CalcComplete)
self.Bind (EVI_CALC_COMPLETE, self.OnCalcComplete)

# Bind work queue to a menu event.
self.Bind(wx.EVT_MENU, self.OnCalcStart, i1d=idCALCSTART)

def OnCalcStart (self,event):
# Start the work thread from the GUI thread.
self.work.queue(...work unit parameters...)

def CalcComplete(self, xxkwargs) :
# Generate CalcComplete event in the calculation thread.
# kwargs contains fieldl, field2, etc. as defined by
# the Work thread class.
event = CalcCompleteEvent (xxkwargs)
wx.PostEvent (self, event)

def OnCalcComplete(self,event):
# Process CalcComplete event in GUI thread.

(continues on next page)
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(continued from previous page)

# Use values from event.fieldl, event.field2 etc. as
# defined by the Work thread class to show the results.

complete (**kwargs)
Update the GUI with the completed results from a work unit.

compute ( *args, **kwargs)
Perform a work unit. The subclass will provide details of the arguments.

exception ()
An exception occurred during computation, so call the exception handler if there is one. If not, then
log the exception and continue.

interrupt ()
Stop the current work item. To clear the work queue as well call the stop() method.

isquit ()
Check for interrupts. Should be called frequently to provide user responsiveness. Also yields to other
running threads, which is required for good performance on OS X.

isrunning ()

queue ( *args, **kwargs)
Add a work unit to the end of the queue. See the compute() method for details of the arguments to the
work unit.

ready (delay=0.0)
Ready for another update after delay=t seconds. Call this for threads which can show intermediate
results from long calculations.

requeue ( *args, **kwargs)
Replace the work unit on the end of the queue. See the compute() method for details of the arguments
to the work unit.

reset (*args, **kwargs)
Clear the queue and start a new work unit. See the compute() method for details of the arguments to
the work unit.

stop ()
Clear the queue and stop the thread. New items may be queued after stop. To stop just the current
work item, and continue the rest of the queue call the interrupt method

update ( **kwargs)
Update GUI with the lastest results from the current work unit.

sas.sascalc.data_util.errid module

Error propogation algorithms for simple arithmetic

Warning: like the underlying numpy library, the inplace operations may return values of the wrong type if some
of the arguments are integers, so be sure to create them with floating point inputs.

sas.

sas.

sas.

sSas.

sascalc.data_util.errld.add (X, varX, Y, varY)
Addition with error propagation

sascalc.data_util.errld.add_inplace (X, varX, Y, varY)
In-place addition with error propagation

sascalc.data_util.errld.div (X, varX, Y, varY)
Division with error propagation

sascalc.data_util.errld.div_inplace (X, varX, Y, varY)
In-place division with error propagation
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sas.sascalc.data_util.errld.exp (X, varX)
Exponentiation with error propagation

sas.sascalc.data_util.errld.log (X, varX)
Logarithm with error propagation

sas.sascalc.data_util.errld.mul (X, varX, Y, varY)
Multiplication with error propagation

sas.sascalc.data_util.errld.mul_inplace (X, varX, Y, varY)
In-place multiplication with error propagation

sas.sascalc.data_util.errld.pow (X, varX, n)
X**n with error propagation

sas.sascalc.data_util.errld.pow_inplace (X, varX, n)
In-place X**n with error propagation

sas.sascalc.data_util.errld.sub (X, varX, Y, varY)
Subtraction with error propagation

sas.sascalc.data_util.errld.sub_inplace (X, varX, Y, varY)
In-place subtraction with error propagation

sas.sascalc.data_util.formatnum module

Format values and uncertainties nicely for printing.
format_uncertainty_pm () produces the expanded format v +/- err.

format_uncertainty_compact () produces the compact format v(##), where the number in parenthesis is
the uncertainty in the last two digits of v.

format_uncertainty () uses the compact format by default, but this can be changed to use the expanded +/-
format by setting format_uncertainty.compact to False.

The formatted string uses only the number of digits warranted by the uncertainty in the measurement.
If the uncertainty is 0 or not otherwise provided, the simple %g floating point format option is used.
Infinite and indefinite numbers are represented as inf and NaN.

Example:

>>> v,dv = 757.2356,0.01032

>>> print format_uncertainty_pm (v, dv)
757.236 +/- 0.010

>>> print format_uncertainty_compact (v, dv)
757.236(10)

>>> print format_uncertainty (v, dv)
757.236(10)

>>> format_uncertainty.compact = False
>>> print format_uncertainty (v, dv)

757.236 +/- 0.010

UncertaintyFormatter() returns a private formatter with its own formatter.compact flag.

sas.sascalc.data_util.formatnum.format_uncertainty_pm (value, uncertainty)
Given value v and uncertainty dv, return a string v +/- dv.

sas.sascalc.data_util.formatnum.format_uncertainty_compact (value, uncer-
tainty)
Given value v and uncertainty dv, return the compact representation v(##), where ## are the first two digits
of the uncertainty.
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sas.sascalc.data_util.nxsunit module

Define unit conversion support for NeXus style units.

The unit format is somewhat complicated. There are variant spellings and incorrect capitalization to worry about,
as well as forms such as “mili*metre” and “le-7 seconds”.

This is a minimal implementation of units including only what I happen to need now. It does not support the
complete dimensional analysis provided by the package udunits on which NeXus is based, or even the units used
in the NeXus definition files.

Unlike other units packages, this package does not carry the units along with the value but merely provides a
conversion function for transforming values.

Usage example:

import nxsunit
u = nxsunit.Converter('milixmetre") # Units stored in mm
v = u(3000, 'm") # Convert the value 3000 mm into meters

NeXus example:

# Load sample orientation in radians regardless of how it is stored.
# 1. Open the path
file.openpath('/entryl/sample/sample_orientation')

# 2. scan the attributes, retrieving 'units'

units = [for attr,value in file.attrs () if attr == 'units']

# 3. set up the converter (assumes that units actually exists)

u = nxsunit.Converter (units[0])

# 4. read the data and convert to the correct units

v u(file.read(), 'radians')

This is a standalone module, not relying on either DANSE or NeXus, and can be used for other unit conversion
tasks.

Note: minutes are used for angle and seconds are used for time. We cannot tell what the correct interpretation
is without knowing something about the fields themselves. If this becomes an issue, we will need to allow the
application to set the dimension for the unit rather than inferring the dimension from an example unit.

class sas.sascalc.data_util.nxsunit.Converter (name)
Bases: object

Unit converter for NeXus style units.

dims = [{'kilometre': 1000.0, 'centixMetre': 0.01, 'milixmeter': 0.001,
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All normal dictionary methods are available. Update and comparison is restricted to other OrderedDict
objects.

Various sequence methods are available, including the ability to explicitly mutate the key ordering.

__contains___ tests:

>>> d = OrderedDict (((1, 3),))
>>> 1 in d

1

>>> 4 in d

0

__getitem__ tests:

>>> OrderedDict (((1, 3), (3, 2), (2, 1)))[2]
1
>>> OrderedDict (((1, 3), (3, 2), (2, 1)))[4]

Traceback (most recent call last):
KeyError: 4

__len__ tests:

>>> len (OrderedDict ())

0

>>> len (OrderedDict (((1, 3), (3, 2), (2, 1))))
3

get tests:

>>> d = OrderedDict (((1, 3), (3, 2), (2, 1)))
>>> d.get (1)

3

>>> d.get (4) is None

>>> d.get (4, 5)

5

>>> d

OrderedDict ([ (1, 3), (3, 2), (2, 1)1)

has_key tests:

>>> d = OrderedDict (((1, 3), (3, 2), (2, 1)))
>>> d.has_key (1)

1

>>> d.has_key (4)

0

clear ()
>>> d = OrderedDict (((1, 3), (3, 2), (2, 1)))
>>> d.clear ()
>>> d
OrderedDict ([]

copy ()
>>> OrderedDict (((1, 3), (3, 2), (2, 1))) .copy()
OrderedDict ([ (1, 3), (3, 2), (2, 1)1)

index (key)

Return the position of the specified key in the OrderedDict.
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>>> d = OrderedDict (((1, 3), (3, 2), (2, 1)))
>>> d.index (3)

1

>>> d.index (4)

Traceback (most recent call last):
ValueError: list.index(x): x not in list

insert (index, key, value)
Takes index, key, and value as arguments.

Sets key to value, so that key is at position index in the OrderedDict.

>>> d = OrderedDict (((1, 3), (3, 2), (2, 1)))

>>> d.insert (0, 4, 0)

>>> d

OrderedDict ([ (4, 0), (1, 3), (3, 2), (2, 1)1)

>>> d.insert (0, 2, 1)

>>> d

OrderedDict ([ (2, 1), (4, 0), (1, 3), (3, 2)])

>>> d.insert (8, 8, 1)

>>> d

OrderedDict ([ (2, 1), (4, 0), (1, 3), (3, 2), (8, 1)])

items ()
items returns a list of tuples representing all the (key, wvalue) pairs in the dictionary.

>>> d = OrderedDict (((1, 3), (3, 2), (2, 1)))
>>> d.items ()

[(1, 3), (3, 2), (2, 1)]

>>> d.clear ()

>>> d.items ()

(]

iteritems ()

>>> ii = OrderedDict (((1, 3), (3, 2), (2, 1))).iteritems{()
>>> ii.next ()

(1, 3)

>>> ii.next ()

(3, 2)

>>> ii.next ()

(2, 1)

>>> ii.next ()

Traceback (most recent call last):

Stoplteration

iterkeys ()

>>> ii = OrderedDict (((1, 3), (3, 2), (2, 1))).iterkeys{()
>>> ii.next ()

>>> ii.next ()

>>> 1ii.next ()

2

>>> ii.next ()

Traceback (most recent call last):

Stoplteration

itervalues ()
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>>> iv = OrderedDict (((1, 3), (3, 2), (2, 1))).itervalues|()
>>> iv.next ()

>>> iv.next ()

>>> iv.next ()

1

>>> iv.next ()

Traceback (most recent call last):
StopIlteration

keys ()
Return a list of keys in the OrderedDict.

>>> d = OrderedDict (((1, 3), (3, 2), (2, 1)))
>>> d.keys ()
(1, 3, 2]

pop (key, *args)
No dict.pop in Python 2.2, gotta reimplement it

>>> d = OrderedDict (((1, 3), (3, 2), (2, 1)))
>>> d.pop (3)

2

>>> d

OrderedDict ([ (1, 3), (2, 1)1)

>>> d.pop (4)

Traceback (most recent call last):

KeyError: 4

>>> d.pop (4, 0)

0

>>> d.pop (4, 0, 1)

Traceback (most recent call last):

TypeError: pop expected at most 2 arguments, got 3

popitem (i=-1)
Delete and return an item specified by index, not a random one as in dict. The index is -1 by default
(the last item).

>>> d = OrderedDict (((1, 3), (3, 2), (2, 1)))
>>> d.popitem()

(2, 1)

>>> d

OrderedDict ([ (1, 3), (3, 2)])

>>> d.popitem(0)

(1, 3)

>>> OrderedDict () .popitem()

Traceback (most recent call last):
KeyError: 'popitem(): dictionary is empty'
>>> d.popitem(2)

Traceback (most recent call last):
IndexError: popitem(): index 2 not wvalid

rename (old_key, new_key)
Rename the key for a given value, without modifying sequence order.

For the case where new_key already exists this raise an exception, since if new_key exists, it is am-
biguous as to what happens to the associated values, and the position of new_key in the sequence.

>>> od = OrderedDict ()
>>> od['a'] = 1
>>> od['b'] = 2

(continues on next page)
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>>> od.
[(ta',
>>> od.
>>> od.
[(ta',
>>> od.

items ()

1), ('b', 2)]
rename ('b', '
items ()

1), ('c', 2)]
rename ('c', 'a')

c")

Traceback (most recent call last):
ValueError: New key already exists: 'a'
>>> od.rename ('d', 'b'")
Traceback (most recent call last):
KeyError: 'd'
reverse ()
Reverse the order of the OrderedDict.
>>> d = OrderedDict (((1, 3), (3, 2), (2, 1)))
>>> d.reverse ()
>>> d
OrderedDict ([ (2, 1), (3, 2), (1, 3)1)
setdefault (key, defval=None)
>>> d = OrderedDict (((1, 3), (3, 2), (2, 1)))
>>> d.setdefault (1)
3
>>> d.setdefault (4) is None
True
>>> d
OrderedDict ([ (1, 3), (3, 2), (2, 1), (4, None)])
>>> d.setdefault (5, 0)
0
>>> d
OrderedDict ([ (1, 3), (3, 2), (2, 1), (4, None), (5, 0)1])

setitems (items)
This method allows you to set the items in the dict.

It takes a list of tuples - of the same sort returned by the i tems method.

>>> d = OrderedDict ()

>>> d.setitems (((3, 1), (2, 3), (1, 2)))
>>> d

OrderedDict ([ (3, 1), (2, 3), (1, 2)1)

setkeys (keys)

setkeys all ows you to pass in a new list of keys which will replace the current set. This must

contain the same set of keys, but need not be in the same order.

If you pass in new keys that don’t match, a KeyError will be raised.

>>> d = OrderedDict (((1, 3), (3, 2), (2, 1)))

>>> d.keys ()

(1, 3, 2]

>>> d.setkeys((1, 2, 3))

>>> d

OrderedDict ([ (1, 3), (2, 1), (3, 2)1)

>>> d.setkeys(['a', 'b', 'c'l])

Traceback (most recent call last):

KeyError: 'Keylist is not the same as current keylist.'

setvalues (values)
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You can pass in a list of values, which will replace the current list. The value list must be the same len
as the OrderedDict.

(OravalueError is raised.)

>>> d = OrderedDict (((1, 3), (3, 2), (2, 1)))

>>> d.setvalues((1, 2, 3))

>>> d

OrderedDict ([ (1, 1), (3, 2), (2, 3)]1)

>>> d.setvalues ([6])

Traceback (most recent call last):

ValueError: Value list is not the same length as the OrderedDict.

sort (*args, **kwargs)
Sort the key order in the OrderedDict.

This method takes the same arguments as the 1ist . sort method on your version of Python.

>>> d = OrderedDict (((4, 1), (2, 2), (3, 3), (1, 4)))
>>> d.sort ()

>>> d

OrderedDict ([ (1, 4), (2, 2), (3, 3), (4, 1)1)

update (from_od)
Update from another OrderedDict or sequence of (key, value) pairs

>>> d = OrderedDict (((1, 0), (0, 1)))

>>> d.update (OrderedDict (((1, 3), (3, 2), (2, 1))))
>>> d

OrderedDict ([ (1, 3), (0, 1), (3, 2), (2, 1)1)

>>> d.update ({4: 4})

Traceback (most recent call last):

TypeError: undefined order, cannot get items from dict
>>> d.update ( (4, 4))

Traceback (most recent call last):

TypeError: cannot convert dictionary update sequence element "4" to a 2-
—item sequence

values (values=None)
Return a list of all the values in the OrderedDict.

Optionally you can pass in a list of values, which will replace the current list. The value list must be
the same len as the OrderedDict.

>>> d = OrderedDict (((1, 3), (3, 2), (2, 1)))
>>> d.values ()
(3, 2, 1]

class sas.sascalc.data_util.odict.SequenceOrderedDict (init_val=(), strict=True)
Bases: sas.sascalc.data _util.odict.OrderedDict

Experimental version of OrderedDict that has a custom object for keys, values, and items.
These are callable sequence objects that work as methods, or can be manipulated directly as sequences.

Test for keys, items and values.

>>> d = SequenceOrderedDict (((1, 2), (2, 3), (3, 4)))
>>> d

SequenceOrderedDict ([ (1, 2), (2, 3), (3, 4)1)

>>> d.keys

[1, 2, 3]

>>> d.keys ()

[1, 2, 3]

(continues on next page)
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>>> d.setkeys ((3, 2, 1))

>>> d

SequenceOrderedDict ([ (3, 4), (2, 3), (1, 2)1)
>>> d.setkeys((1, 2, 3))

>>> d.keys[0]

1

>>> d.keys/[:]

(1, 2, 3]

>>> d.keys[-1]

>>> d.keys[-2]

2

>>> d.keys[0:2] = [2, 1]

>>> d

SequenceOrderedDict ([ (2, 3), (1, 2), (3, 4)1)
>>> d.keys.reverse ()

>>> d.keys

[3, 1, 2]

>>> d.keys = [1, 2, 3]

>>> d

SequenceOrderedDict ([ (1, 2), (2, 3), (3, 4)1)
>>> d.keys = [3, 1, 2]

>>> d

SequenceOrderedDict ([ (3, 4), (1, 2), (2, 3)1)
>>> a = SequenceOrderedDict ()
>>> b = SequenceOrderedDict ()

>>> a.keys == b.keys
1

>>> a['a'] = 3

>>> a.keys == b.keys
0

>>> b['a'] = 3

>>> a.keys == b.keys
1

>>> b['b'] = 3

>>> a.keys == b.keys
0

>>> a.keys > Db.keys
0

>>> a.keys < b.keys
1

>>> 'a' in a.keys

1

>>> len (b.keys)

2

>>> 'c' in d.keys

0

>>> 1 in d.keys

1

>>> [v for v in d.keys]
[3, 1, 2]

>>> d.keys.sort ()
>>> d.keys

[1, 2, 3]

>>> d = SequenceOrderedDict (((1, 2), (2, 3), (3, 4)), strict=True)
>>> d.keys[::-1] = [1, 2, 3]
>>> d

SequenceOrderedDict ([ (3, 4), (2, 3), (1, 2)1)
>>> d.keys[:2]

[3, 21

>>> d.keys[:2] = [1, 3]

(continues on next page)
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Traceback (most recent call last):
KeyError: 'Keylist is not the same as current keylist.'

>>> d = SequenceOrderedDict (((1, 2), (2, 3), (3, 4)))
>>> d

SequenceOrderedDict ([ (1, 2), (2, 3), (3, 4)1)
>>> d.values

[2, 3, 4]

>>> d.values ()

[2, 3, 4]

>>> d.setvalues ((4, 3, 2))

>>> d

SequenceOrderedDict ([ (1, 4), (2, 3), (3, 2)1)
>>> d.values[::-1]

[2, 3, 4]

>>> d.values[0]

>>> d.values[-2]

3

>>> del d.values[0]

Traceback (most recent call last):

TypeError: Can't delete items from values
>>> d.values[::2] = [2, 4]

>>> d

SequenceOrderedDict ([ (1, 2), (2, 3), (3, 4)1)
>>> 7 in d.values

0

>>> len(d.values)

3

>>> [val for val in d.values]
[2, 3, 4]

>>> d.values[-1] = 2
>>> d.values.count (2)
2

>>> d.values.index (2)
0

>>> d.values[-1] = 7
>>> d.values

[2, 3, 7]

>>> d.values.reverse ()

>>> d.values

[7, 3, 2]

>>> d.values.sort ()

>>> d.values

[2, 3, 7]

>>> d.values.append('anything')
Traceback (most recent call last):
TypeError: Can't append items to values
>>> d.values = (1, 2, 3)

>>> d

SequenceOrderedDict ([ (1, 1), (2, 2), (3, 3)1)

>>> d = SequenceOrderedDict (((1, 2), (2, 3), (3, 4)))
>>> d

SequenceOrderedDict ([ (1, 2), (2, 3), (3, 4)1)

>>> d.items ()

(1, 2y, (2, 3), (3, 4)]

>>> d.setitems ([ (3, 4), (2 ,3), (1, 2)1)

>>> d

SequenceOrderedDict ([ (3, 4), (2, 3), (1, 2)1)

(continues on next page)
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>>> d.items[0]
(3, 4)

>>> d.items[:-1]
[(3, 4), (2, 3)]
>>> d.items[1] =
>>> d.items

[(3, 4), (6, 3), (1, 2)]

>>> d.items[1:2] = [(9, 9)]

>>> d

SequenceOrderedDict ([ (3, 4), (9, 9), (1, 2)1)
>>> del d.items[1:2]

>>> d

SequenceOrderedDict ([ (3, 4), (1, 2)1)

>>> (3, 4) in d.items

(6, 3)

1

>>> (4, 3) in d.items
0

>>> len(d.items)

2

>>> [v for v in d.items]

[(3, 4), (1, 2)]

>>> d.items.count ((3, 4))

1

>>> d.items.index ((1, 2))

1

>>> d.items.index ((2, 1))

Traceback (most recent call last):
ValueError: list.index(x): x not in list
>>> d.items.reverse ()

>>> d.items

[(1, 2), (3, 4)]

>>> d.items.reverse ()

>>> d.items.sort ()

>>> d.items

[(1, 2), (3, 4)]

>>> d.items.append((5, 6))

>>> d.items

[(1, 2), (3, 4), (5, 6)]

>>> d.items.insert (0, (0, 0))

>>> d.items

[0, 0), (1, 2), (3, 4), (5 6)]

>>> d.items.insert (-1, (7, 8))

>>> d.items

[0, 0), (1, 2), (3, 4), (7, 8), (5, 6)]
>>> d.items.pop ()

(5, 6)

>>> d.items

[0, 0), (1, 2), (3, 4), (7, 8)]

>>> d.items.remove ((1, 2))

>>> d.items

[0, 0), (3, 4), (7, 8)]

>>> d.items.extend ([ (1, 2), (5, 6)1)
>>> d.items

[0, 0), (3, 4), (7, 8), (1, 2), (5, 6)]

sas.sascalc.data_util.ordereddict module

Backport from python2.7 to python <= 2.6.

class sas.sascalc.data_util.ordereddict.OrderedDict (*args, **kwds)
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Bases: dict
clear () — None. Remove all items from D.
copy () — a shallow copy of D

classmethod fromkeys (S [, v]) — New dict with keys from S and values equal to v.
v defaults to None.

items () — list of D’s (key, value) pairs, as 2-tuples
keys () — list of D’s keys

pop (k[, d ] ) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem () — (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

setdefault (k[, d] ) — D.get(k,d), also set D[k]=d if k not in D

update ([E ], **F) — None. Update D from dict/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys()
method, does: for (k, v) in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () — list of D’s values

sas.sascalc.data_util.ordereddicttest module

class sas.sascalc.data_util.ordereddicttest.TestOrderedDict (methodName="runTest’)
Bases: unittest.case.TestCase

test_clear ()
test_copying ()
test_delitem()
test_equality ()
test_init ()
test_iterators()
test_pop ()
test_popitem()
test_reinsert ()
test_repr ()
test_setdefault ()
test_setitem()

test_update ()

sas.sascalc.data_util.pathutils module

Utilities for path manipulation. Not to be confused with the pathutils module from the pythonutils package (http:
//groups.google.com/group/pythonutils).

sas.sascalc.data_util.pathutils.relpath (pl, p2)
Compute the relative path of p1 with respect to p2.
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sas.sascalc.data_util.registry module

File extension registry.
This provides routines for opening files based on extension, and registers the built-in file extensions.

class sas.sascalc.data_util.registry.ExtensionRegistry (**w)
Bases: object

Associate a file loader with an extension.
Note that there may be multiple loaders for the same extension.

Example:

registry = ExtensionRegistry ()

# Add an association by setting an element
registry['.zip'] = unzip

# Multiple extensions for one loader
registry['.tgz'] = untar
registry['.tar.gz'] = untar

# Generic extensions to use after trying more specific extensions;
# these will be checked after the more specific extensions fail.

registry['.gz'] = gunzip

# Multiple loaders for one extension

registry['.cx'] = cxl1
registry['.cx'] = cx2
registry['.cx'] = cx3

# Show registered extensions
print registry.extensions()

# Can also register a format name for explicit control from caller
registry['cx3'] = cx3
print registry.formats ()

# Retrieve loaders for a file name
registry.lookup('hello.cx") —-> [cx3,cx2,cxl]

# Run loader on a filename
registry.load('hello.cx") —>
try:
return cx3('hello.cx")
except:
try:
return cx2('hello.cx")
except:
return cxl('hello.cx")

# Load in a specific format ignoring extension
registry.load('hello.cx', format="cx3"') —->
return cx3('hello.cx")

extensions ()
Return a sorted list of registered extensions.

formats ()
Return a sorted list of the registered formats.

load (path, format=None)
Call the loader for the file type of path.

286 Chapter 2. Developer Documentation



SasView Documentation, Release 4.2.2

Raises
* ValueError - if no loader is available.
* KeyError — if format is not available.
May raise a loader-defined exception if loader fails.

lookup (path)
Return the loader associated with the file type of path.

Parameters path — Data file path
Raises ValueError — When no loaders are found for the file.

Returns List of available readers for the file extension

sas.sascalc.data_util.uncertainty module

Uncertainty propagation class for arithmetic, log and exp.

Based on scalars or numpy vectors, this class allows you to store and manipulate values+uncertainties, with prop-
agation of gaussian error for addition, subtraction, multiplication, division, power, exp and log.

Storage properties are determined by the numbers used to set the value and uncertainty. Be sure to use floating
point uncertainty vectors for inplace operations since numpy does not do automatic type conversion. Normal
operations can use mixed integer and floating point. In place operations such as a *= b create at most one extra
copy for each operation. By contrast, ¢ = a*b uses four intermediate vectors, so shouldn’t be used for huge arrays.

class sas.sascalc.data_util.uncertainty.Uncertainty (x, variance=None)
Bases: object

dx
standard deviation

exp ()
log ()

Module contents

sas.sascalc.dataloader package

Subpackages

sas.sascalc.dataloader.readers package
Submodules
sas.sascalc.dataloader.readers.abs_reader module

IGOR 1D data reader

class sas.sascalc.dataloader.readers.abs_reader.Reader
Bases: sas.sascalc.dataloader.file reader _base class.FileReader

Class to load IGOR reduced .ABS files
ext = ['.abs', '.cor']

get_file_ contents ()
Get the contents of the file
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Raises
* RuntimeError — when the file can’t be opened
* ValueError — when the length of the data vectors are inconsistent
type = ['IGOR 1D files (x.abs)|*x.abs', 'IGOR 1D USANS files (x.cor)|*.cor']

type_name = 'IGOR 1D'

sas.sascalc.dataloader.readers.anton_paar_saxs_reader module

CanSAS 2D data reader for reading HDFS formatted CanSAS files.

class sas.sascalc.dataloader.readers.anton_paar_saxs_reader.Reader (xml=None,

schema=None)
Bases: sas.sascalc.dataloader.readers.xml_reader.XMLreader

A class for reading in Anton Paar .pdh files
allow_all = False

errors = None

ext = ['.pdh', '.PDH']

get_file_contents ()
This is the general read method that all SasView data_loaders must have.

Parameters filename — A path for an XML formatted Anton Paar SAXSess data file.
Returns List of DatalD objects or a list of errors.

logging = None

parent_list = None

raw_data = None

read_data ()

reset_state()
Resets the class state to a base case when loading a new data file so previous data files do not appear a
second time

type = ['Anton Paar SAXSess Files (x.pdh) |*.pdh']

type_name = 'Anton Paar SAXSess'

sas.sascalc.dataloader.readers.ascii_reader module

Generic multi-column ASCII data reader

class sas.sascalc.dataloader.readers.ascii_reader.Reader
Bases: sas.sascalc.dataloader.file reader base class.FileReader

Class to load ascii files (2, 3 or 4 columns).
allow_all = True
ext = ['.txt', '.dat', '.abs', '.csv']

get_file_ contents ()
Get the contents of the file

min_data_pts = 5
type = ['ASCII files (x.txt)|x.txt', 'ASCII files (*x.dat)|x.dat', 'ASCII files (*.al

type_name = 'ASCII'
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sas.sascalc.dataloader.readers.associations module

Module to associate default readers to file extensions. The module reads an xml file to get the readers for each file
extension. The readers are tried in order they appear when reading a file.

sas.sascalc.dataloader.readers.associations.read associations (loader, set-
tings={".abs’:
‘abs_reader’,
‘.cor’:
‘abs_reader’,
“dat’:
‘red2d_reader’,
" hS’:
cansas_reader_ HDFS’,
.nxs’:
‘cansas_reader_HDF5’,
“pdh’:  an-
ton_paar_saxs_reader’,
‘sans’:
"danse_reader’,
v

ses’:
sesans_reader’,

s >

Ixt:
‘ascii_reader’,
xml’:
‘cansas_reader’})
Read the specified settings file to associate default readers to file extension.
Parameters
* loader — Loader object

* settings — path to the json settings file [string]

sas.sascalc.dataloader.readers.cansas_constants module

Information relating to the CanSAS data format. These constants are used in the cansas_reader.py file to read in
any version of the cansas format.

class sas.sascalc.dataloader.readers.cansas_constants.CansasConstants
Bases: object

The base class to define where all of the data is to be saved by cansas_reader.py.

ANY = {'storeas': 'content '}

CANSAS_FORMAT = {'SASentry': {'attributes': { 'name"': {}}, 'units_optional':
CANSAS NS = {'1.0': {'ms': 'cansasld/1.0', 'schema': 'cansasld_vl_0.xsd'}, '1.1'
RUN = {'attributes': {'name': ({}}}

SASDATA = {'attributes': { 'name"': {}}, 'children': {'zacceptance': {'storeas':
SASDATA IDATA = {'attributes': {'timestamp': {'storeas': 'timestamp'}, 'name':
SASDATA_ IDATA DQL = {'attributes': {'unit': {'storeas': 'content'}}, 'storeas':
SASDATA_ IDATA DQW = {'attributes': {'unit': {'storeas': 'content'}}, 'storeas':
SASDATA IDATA I = {'attributes': {'unit': {'storeas': 'content'}}, 'storeas':
SASDATA IDATA IDEV = {'attributes': {'unit': {'storeas': 'content'}}, 'storeas':
SASDATA_ IDATA Q = {'attributes': {'unit': {'storeas': 'content'}}, 'storeas':
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SASDATA IDATA QDEV = {'attributes': {'unit': {'storeas': 'content'}}, 'storeas':
SASDATA IDATA QMEAN = {'attributes': {'unit': ({}}, 'unit': 'X unit'}

SASDATA_IDATA SHADOWFACTOR = {}

SASINSTR = {'children': {'SAScollimation’': {'attributes': {'name': {}}, 'childre
SASINSTR_COLL = {'attributes': {'name': {}}, 'children': {'aperture': {'attributl
SASINSTR COLL_APER = {'attributes': {'type': {}, 'name': {}}, 'children': {'dist
SASINSTR_COLL APER_ATTR = {'unit': {}}

SASINSTR_COLL_APER_DIST = {'attributes': {'unit': {}}, 'storeas': 'float', 'unit
SASINSTR_COLL_APER SIZE = {'attributes': {'unit': {}}, 'children': {'y': {'attr:
SASINSTR COLL _APER X = {'attributes': {'unit': {}}, 'storeas': 'float', 'unit':
SASINSTR _COLL_APER_ Y = {'attributes': {'unit': {}}, 'storeas': 'float', 'unit':
SASINSTR COLL_APER Z = {'attributes': {'unit': {}}, 'storeas': 'float', 'unit':
SASINSTR DET = {'attributes': {'name': {'storeas': 'content'}}, 'children': {'o:
SASINSTR DET BC = {'children': {'y': {'attributes': {'storeas': 'content'}, 'st«
SASINSTR DET_BC X = {'attributes': {'storeas': 'content'}, 'storeas': 'float', '
SASINSTR DET _BC_Y = {'attributes': {'storeas': 'content'}, 'storeas': 'float', '
SASINSTR DET BC Z = {'attributes': {'storeas': 'content'}, 'storeas': 'float', '
SASINSTR DET_OFF = {'children': {'y': {'attributes': {'unit': {'storeas': ' cont
SASINSTR DET_OFF_ATTR = {'unit': {'storeas': 'content'}}

SASINSTR DET OFF_X = {'attributes': {'unit': {'storeas': 'content'}}, 'storeas':
SASINSTR DET OFF_Y = {'attributes': {'unit': {'storeas': 'content'}}, 'storeas':
SASINSTR DET_OFF_2Z = {'attributes': {'unit': {'storeas': 'content'}}, 'storeas':
SASINSTR_DET OR = {'children': {'yaw': {'attributes': {}, 'storeas': 'float', '

SASINSTR_DET OR ATTR = {}

SASINSTR DET_OR PITCH = {'attributes': {}, 'storeas': 'float', 'unit': 'orientat:
SASINSTR DET_OR ROLL = {'attributes': {}, 'storeas': 'float', 'unit': 'orientati
SASINSTR DET OR YAW = {'attributes': {}, 'storeas': 'float', 'unit': 'orientatio:
SASINSTR DET_PIXEL = {'children': {'y': {'attributes': {'storeas': 'content'},
SASINSTR DET_PIXEL X = {'attributes': {'storeas': 'content'}, 'storeas': 'float',
SASINSTR _DET_PIXEL Y = {'attributes': {'storeas': 'content'}, 'storeas': 'float'
SASINSTR_DET_PIXEL Z = {'attributes': {'storeas': 'content'}, 'storeas': 'float'
SASINSTR DET_SDD = {'attributes': {'unit': {}}, 'storeas': 'float', 'unit': 'di.
SASINSTR DET_SLIT = {'attributes': {'unit': {}}, 'storeas': 'float', 'unit': 's!
SASINSTR_SRC = {'attributes': {'name': {}}, 'children': {'wavelength_max': {'att
SASINSTR SRC_BEAMSIZE = {'attributes': {'name': {}}, 'children': {'y': {'attrib:
SASINSTR_SRC_BEAMSIZE ATTR = {'unit': '}

SASINSTR_SRC_BEAMSIZE X = {'attributes': {'unit': ''}, 'storeas': 'float', 'unit
SASINSTR_SRC_BEAMSIZE Y = {'attributes': {'unit': ''}, 'storeas': 'float', 'unit
SASINSTR_SRC_BEAMSIZE_ Z = {'attributes': {'unit': ''}, 'storeas': 'float', 'unit
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SASINSTR_SRC_WL = {'attributes': {'unit': {}}, 'storeas': 'float', 'unit': 'wave
SASINSTR _SRC_WL MAX = {'attributes': {'unit': {'storeas': 'content'}}, 'storeas'
SASINSTR SRC_WL MIN = {'attributes': {'unit': {'storeas': 'content'}}, 'storeas'
SASINSTR_SRC_WL_SPR = {'attributes': {'unit': {'storeas': 'content'}}, 'storeas'

SASNOTE = {}

SASPROCESS = {'children': {'term': {'attributes': {'name': {}, 'unit': {}}}, '
SASPROCESS_SASPROCESSNOTE = {'children': {'<any>': {'storeas': 'content'}}}
SASPROCESS_TERM = {'attributes': { 'name': {}, 'unit': {}}}

SASSAMPLE = {'attributes': {'name': {}}, 'children': {'<any>': {'storeas': ' cos
SASSAMPLE ORIENT = {'children': {'yaw': {'attributes': {'unit': {}}, 'storeas':
SASSAMPLE_ORIENT ATTR = {'unit': {}}

SASSAMPLE_ORIENT_PITCH = {'attributes': {'unit': ({}}, 'storeas': 'float', 'unit'
SASSAMPLE_ORIENT_ROLL = {'attributes': {'unit': {}}, 'storeas': 'float', 'unit':
SASSAMPLE ORIENT_YAW = {'attributes': {'unit': {}}, 'storeas': 'float', 'unit':
SASSAMPLE POS = {'children': {'y': {'attributes': {'unit': {}}, 'storeas': '£1c
SASSAMPLE_POS_ATTR = {'unit': {}}

SASSAMPLE POS_ X = {'attributes': {'unit': {}}, 'storeas': 'float', 'unit': 'pos:
SASSAMPLE POS_Y = {'attributes': {'unit': {}}, 'storeas': 'float', 'unit': ' pos:
SASSAMPLE POS_Z = {'attributes': {'unit': {}}, 'storeas': 'float', 'unit': ' pos:
SASSAMPLE _TEMP = {'attributes': {'unit': {}}, 'storeas': 'float', 'unit': ' tempe
SASSAMPLE THICK = {'attributes': {'unit': {}}, 'storeas': 'float', 'unit': 'thic
SASSAMPLE TRANS = {'storeas': 'float'}

SASTRANSSPEC = {'attributes': {'timestamp': {}, 'name': {}}, 'children': { ' Tdat:
SASTRANSSPEC_TDATA = {'children': {'Tdev': {'attributes': {'unit': {'storeas':
SASTRANSSPEC_TDATA_ LAMDBA = {'attributes': {'unit': {'storeas': 'content'}}, 'st«
SASTRANSSPEC_TDATA_T = {'attributes': {'unit': {'storeas': 'content'}}, 'storeas
SASTRANSSPEC_TDATA TDEV = {'attributes': {'unit': {'storeas': 'content'}}, 'store
TITLE = {}

format = ''

get_namespace_map ()
Helper method to get the names namespace list

iterate_namespace (namespace)
Method to iterate through a cansas constants tree based on a list of names

Parameters namespace — A list of names that match the tree structure of cansas_constants
names = "'

class sas.sascalc.dataloader.readers.cansas_constants.CurrentLevel
Bases: object

A helper class to hold information on where you are in the constants tree

current_level = ''
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get_current_level ()
Helper method to get the current_level map

get_data_type ()
Helper method to get the ns_datatype label

get_variable ()
Helper method to get the ns_variable label

T

ns_datatype

ns_optional = True

sas.sascalc.dataloader.readers.cansas_reader module

class sas.sascalc.dataloader.readers.cansas_reader .Reader (xml/=None,

schema=None)
Bases: sas.sascalc.dataloader.readers.xml_reader.XMLreader

allow_all = True

base_ns = '{cansasld/1.0}’
cansas_defaults = None
cansas_version = '1.0'
current_datald = None

data = None

errors = set([])
ext = ['.xml', '.svs']
frm = "'

get_file_ contents ()
Reader specific class to access the contents of the file All reader classes that inherit from FileReader
must implement

invalid = True

is_cansas (ext="xml’)
Checks to see if the XML file is a CanSAS file

Parameters ext — The file extension of the data file
Raises FileContentsException — Raised if XML file isn’t valid CanSAS
load_file_and_schema (xml_file, schema_path="")
logging = None
names = None
ns_list = None

reset_state ()
Resets the class state to a base case when loading a new data file so previous data files do not appear a
second time

type = ['XML files (*.xml) |*.xml', 'SasView Save Files (x.svs) |*.svs']
type_name = 'canSAS'

write (filename, datainfo)
Write the content of a DatalD as a CanSAS XML file

Parameters
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* filename — name of the file to write
* datainfo — DatalD object
write_node (parent, name, value, attr=None)

Parameters
* doc — document DOM
* parent — parent node
* name — tag of the element
* value - value of the child text node
* attr - attribute dictionary

Returns True if something was appended, otherwise False

sas.sascalc.dataloader.readers.cansas_reader.get_content (location, node)
Get the first instance of the content of a xpath location.

Parameters
* location - xpath location
* node — node to start at
Returns Element, or None

sas.sascalc.dataloader.readers.cansas_reader.getattrchain (obj, chain, de-
fault=None)
Like getattr, but the attr may contain multiple parts separated by ‘.’

sas.sascalc.dataloader.readers.cansas_reader.setattrchain (obj, chain, value)
Like setattr, but the attr may contain multiple parts separated by ‘.’

sas.sascalc.dataloader.readers.cansas_reader.write_node (doc, parent, name,
value, attr=None)

Parameters
* doc — document DOM
* parent — parent node
* name — tag of the element
* value - value of the child text node
* attr - attribute dictionary

Returns True if something was appended, otherwise False

sas.sascalc.dataloader.readers.cansas_reader HDF5 module

NXcanSAS data reader for reading HDF5 formatted CanSAS files.

class sas.sascalc.dataloader.readers.cansas_reader_ HDF5.Reader
Bases: sas.sascalc.dataloader.file_reader_base class.FileReader

A class for reading in NXcanSAS data files. The current implementation has been tested to load data gen-
erated by multiple facilities, all of which are known to produce NXcanSAS standards compliant data. Any
number of data sets may be present within the file and any dimensionality of data may be used. Currently
1D and 2D SAS data sets are supported, but should be immediately extensible to SESANS data.

Any number of SASdata groups may be present in a SASentry and the data within each SASdata group can
be a single 1D I(Q), multi-framed 1D I(Q), 2D I(Qx, Qy) or multi-framed 2D I(Qx, Qy).

Dependencies The NXcanSAS HDFS5 reader requires hSpy => v2.5.0 or later.
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add_data_set (key=")
Adds the current_dataset to the list of outputs after preforming final processing on the data and then
calls a private method to generate a new data set.

Parameters key — NeXus group name for current tree level

add_intermediate ()
This method stores any intermediate objects within the final data set after fully reading the set.

Parameters parent —The NXclass name for the hSpy Group object that just finished being
processed

allow _all = True

static as_list_or_array (iterable)
Return value as a list if not already a list or array. :param iterable: :return:

cansas_version = 2.0
ext = ['.h5', '.H5']

final_data_cleanup ()
Does some final cleanup and formatting on self.current_datainfo and all datalD and data2D objects
and then combines the data and info into DatalD and Data2D objects

get_file_ contents ()
This is the general read method that all SasView data_loaders must have.

Parameters filename — A path for an HDF5 formatted CanSAS 2D data file.
Returns List of DatalD/2D objects and/or a list of errors.

process_1d_data_object (data_set, key, unit)
SASdata processor method for 1d data items :param data_set: data from HDFS5 file :param key:
canSAS_class attribute :param unit: unit attribute

process_2d_data_object (data_set, key, unit)

process_aperture (data_point, key)
SASaperture processor :param data_point: Single point from an HDF5 data file :param key: class
name data_point was taken from

process_collimation (data_point, key, unit)
SAScollimation processor :param data_point: Single point from an HDF5 data file :param key: class
name data_point was taken from :param unit: unit attribute from data set

process_detector (data_point, key, unit)
SASdetector processor :param data_point: Single point from an HDF5 data file :param key: class
name data_point was taken from :param unit: unit attribute from data set

process_process (data_point, key)
SASprocess processor :param data_point: Single point from an HDFS5 data file :param key: class name
data_point was taken from

process_sample (data_point, key)
SASsample processor :param data_point: Single point from an HDFS5 data file :param key: class name
data_point was taken from

process_source (data_point, key, unit)
SASsource processor :param data_point: Single point from an HDF5 data file :param key: class name
data_point was taken from :param unit: unit attribute from data set

process_trans_spectrum (data_set, key)
SAStransmission_spectrum processor :param data_set: data from HDFS5 file :param key:
canSAS_class attribute

read_children (data, parent_list)
A recursive method for stepping through the hierarchical data file.
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sas.

Parameters
* data — h5py Group object of any kind
* parent — h5py Group parent name

reset_state ()
Create the reader object and define initial states for class variables

type = ['NXcanSAS HDF5 Files (*x.h5) |*.h5]|"']
type_name = 'NXcanSAS'

sascalc.dataloader.readers.cansas_reader_ HDF5.hb5attr (node, key, de-
fault=None)

sas.sascalc.dataloader.readers.danse_reader module

DANSE/SANS file reader

class sas.sascalc.dataloader.readers.danse_reader.Reader

Bases: sas.sascalc.dataloader.file reader base class.FileReader
Example data manipulation
ext = ['.sans', '.SANS']

get_file contents ()
Reader specific class to access the contents of the file All reader classes that inherit from FileReader
must implement

type = ['DANSE files (x.sans) |*.sans']

type_name = 'DANSE'

sas.sascalc.dataloader.readers.red2d_reader module

TXT/IGOR 2D Q Map file reader

class sas.sascalc.dataloader.readers.red2d_reader.Reader

sas.

Bases: sas.sascalc.dataloader.file_reader_base class.FileReader
Simple data reader for Igor data files
ext = ['.DAT', '.dat']

get_file_ contents ()
Reader specific class to access the contents of the file All reader classes that inherit from FileReader
must implement

type = ['IGOR/DAT 2D file in Q map (x.dat) |*.DAT']
type_name = 'IGOR/DAT 2D Q map'

write (filename, data)
Write to .dat

Parameters
e filename - file name to write
e data — data2D

sascalc.dataloader.readers.red2d_reader.check_ point (x_point)
check point validity
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sas.sascalc.dataloader.readers.sesans_reader module

SESANS reader (based on ASCII reader)
Reader for .ses or .sesans file format
Jurrian Bakker

class sas.sascalc.dataloader.readers.sesans_reader.Reader
Bases: sas.sascalc.dataloader.file reader base class.FileReader

Class to load sesans files (6 columns).
allow_all = True
ext = ['.ses', '.SES', '.sesans', '.SESANS']

get_file contents ()
Reader specific class to access the contents of the file All reader classes that inherit from FileReader
must implement

type = ['SESANS files (x.ses)|*x.ses', 'SESANS files (*..sesans)|x.sesans']

type_name = 'SESANS'

sas.sascalc.dataloader.readers.tiff_reader module

Image reader. Untested.

class sas.sascalc.dataloader.readers.tiff_ reader.Reader
Example data manipulation

ext = ['.tif"', '.tiff']

read (filename=None)
Open and read the data in a file

Parameters f£ile — path of the file
type = ['TIF files (x.tif) |*.tif', 'TIFF files (x.tiff) |x.tiff']

type_name = 'TIF'

sas.sascalc.dataloader.readers.xml_reader module

Generic XML read and write utility
Usage: Either extend xml_reader or add as a class variable.

class sas.sascalc.dataloader.readers.xml_reader.XMLreader (xml/=None,

schema=None)
Bases: sas.sascalc.dataloader.file reader base class.FileReader

Generic XML read and write class. Mostly helper functions. Makes reading/writing XML a bit easier than
calling Ixml libraries directly.

Dependencies This class requires Ixml 2.3 or higher.

append (element, tree)
Append an etree Element to an ElementTree.

Parameters
* element - etree Element to append

* tree — ElementTree object to append to
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break_processing_ instructions (string, dic)
Method to break a processing instruction string apart and add to a dict

Parameters
* string — A processing instruction as a string
* dic - The dictionary to save the PIs to

create_element (name, attrib=None, nsmap=None)
Create an XML element for writing to file

Parameters name — The name of the element to be created

create_element_from_string (xml_string)
Create an element from an XML string

Parameters xml_string — A string of xml

create_tree (root)
Create an element tree for processing from an etree element

Parameters root — etree Element(s)

ebuilder (parent, elementname, text=None, attrib=None)
Use Ixml E builder class with arbitrary inputs.

Parameters
* parnet — The parent element to append a child to
* elementname — The name of the child in string form
* text — The element text
* attrib — A dictionary of attribute names to attribute values
encoding = None

find_ invalid xml ()
Finds the first offending element that should not be present in XML file

parse_schema_and_doc ()
Creates a dictionary of the parsed schema and xml files.

processing instructions = None

reader ()
Read in an XML file into memory and return an Ixml dictionary

return_processing_instructions ()
Get all processing instructions saved when loading the document

Parameters tree - etree.ElementTree object to write Pls to
schema = None
schemadoc = None

set_encoding (attr_str)
Find the encoding in the xml declaration and save it as a string

Parameters attr_str — All attributes as a string e.g. “fool="barl” foo2="bar2”
foo3="bar3” ... foo_n="bar_n"*

set_processing_ instructions ()
Take out all processing instructions and create a dictionary from them If there is a default encoding,
the value is also saved

set_schema (schema)
Set the schema file and parse
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set_xml file (xml)
Set the XML file and parse

set_xml_string (fag_soup)
Set an XML string as the working XML.

Parameters tag_soup — XML formatted string

to_string (elem, pretty_print=False, encoding=None)
Converts an etree element into a string

validate_xml ()
Checks to see if the XML file meets the schema

write_attribute (elem, attr_name, attr_value)
Write attributes to an Element

Parameters
* elem - etree.Element object
e attr name — attribute name to write
* attr_ wvalue - attribute value to set

write text (elem, text)
Werite text to an etree Element

Parameters
* elem - etree.Element object
¢ text — text to write to the element
xml = None
xmldoc = None

xmlroot = None

Module contents
Submodules
sas.sascalc.dataloader.data_info module

Module that contains classes to hold information read from reduced data files.
A good description of the data members can be found in the CanSAS 1D XML data format:
http://www.smallangles.net/wgwiki/index.php/cansas1d_documentation

class sas.sascalc.dataloader.data_info.Aperture
Bases: object

distance = None
distance_unit = 'mm'
name = None

size = None
size_name = None
size unit = 'mm'

type = None
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class sas.sascalc.dataloader.data_info.Collimation
Bases: object

Class to hold collimation information
aperture = None

length = None

length_unit = 'mm'

name = None

class sas.sascalc.dataloader.data_info.DatalD (x=None, y=None, dx=None,
dy=None, lam=None, dlam=None,

isSesans=None)
Bases: sas.sascalc.dataloader.data_info.plottable_ 1D, sas.sascalc.

dataloader.data_info.DatalInfo
1D data class

clone_without_data (length=0, clone=None)
Clone the current object, without copying the data (which will be filled out by a subsequent operation).
The data arrays will be initialized to zero.

Parameters
* length — length of the data array to be initialized
* clone - if provided, the data will be copied to clone

is_slit smeared ()
Check whether the data has slit smearing information :return: True is slit smearing info is present,
False otherwise

class sas.sascalc.dataloader.data_info.Data2D (data=None, err_data=None,

gx_data=None, qy_data=None,
q_data=None, mask=None,
dqgx_data=None, dqy_data=None)

Bases: sas.sascalc.dataloader.data_info.plottable 2D, sas.sascalc.

dataloader.data_info.DatalInfo

2D data class

I unit = '1l/cm’

Q unit = '1/A"

clone_without_data (length=0, clone=None)
Clone the current object, without copying the data (which will be filled out by a subsequent operation).
The data arrays will be initialized to zero.

Parameters
* length — length of the data array to be initialized
* clone - if provided, the data will be copied to clone
isSesans = False
x_bins = None
y_bins = None

class sas.sascalc.dataloader.data_info.DataInfo
Bases: object

Class to hold the data read from a file. It includes four blocks of data for the instrument description, the
sample description, the data itself and any other meta data.

add_notes (message="")
Add notes to datainfo
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append_empty_process ()
collimation = None
detector = None
errors = None
filename = ''
instrument = ''
isSesans = None
meta_data = None
notes = None
process = None

run = None

run_name = None

sample None

source = None

title = "'

trans_spectrum = None

class sas.sascalc.dataloader.data_info.Detector

Bases: object

Class to hold detector information
beam center = None
beam_center_ unit = 'mm’
distance = None
distance_unit = 'mm'
name = None

offset = None
offset_unit = 'm'

orientation = None

orientation_unit = 'degree'
pixel_size = None
pixel_size_unit = 'mm'
slit_length = None

slit_length unit = 'mm’

class sas.sascalc.dataloader.data_info.Process

Bases: object

Class that holds information about the processes performed on the data.
date = "'

description = ''

is_empty ()
Return True if the object is empty

name = ''
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notes = None

single_line_desc()

Return a single line string representing the process

term = None

class sas.sascalc.dataloader.data_info

Bases: object

Class to hold the sample description
ID = "'

details = None

name = ''

orientation = None
orientation_unit = 'degree'
position = None
position_unit = 'mm'
temperature = None
temperature_unit = None
thickness = None
thickness_unit = 'mm'
transmission = None
yacceptance = (0, '')

zacceptance = (0, '')

class sas.sascalc.dataloader.data_info

Bases: object

Class to hold source information
beam_shape = None

beam size = None
beam_size_name = None
beam_size_unit = 'mm'

name = None

radiation = None
wavelength = None
wavelength_max = None
wavelength_max unit = 'nm'
wavelength_min = None
wavelength _min_unit = 'nm'
wavelength_spread = None
wavelength_spread_unit = 'percent'

wavelength_unit = 'A'

.Sample

.Source
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class sas.sascalc.dataloader.data_info.TransmissionSpectrum

Bases: object

Class that holds information about transmission spectrum for white beams and spallation sources.
name = ''

timestamp = ''

transmission = None

transmission_deviation = None

transmission_deviation unit =
transmission_unit = "'
wavelength = None

wavelength_unit = 'A’

class sas.sascalc.dataloader.data_info.Vector (x=None, y=None, z=None)

Bases: object

Vector class to hold multi-dimensional objects

X = None
y = None
z = None

sas.sascalc.dataloader.data_info.combine_data_info_with_plottable (data,

datainfo)
A function that combines the Datalnfo data in self.current_datainto with a plottable_1D or 2D data object.

Parameters data — A plottable_1D or plottable_2D data object
Returns A fully specified DatalD or Data2D object

class sas.sascalc.dataloader.data_info.plottable_1D (x, y, dx=None, dy=None,

dxl=None, dxw=None,

lam=None, dlam=None)
Bases: object

DatalD is a place holder for 1D plottables.

dlam = None

dx = None
dxl = None
dxw = None
dy = None

lam = None
x = None

xaxis (label, unit)
set the x axis label and unit

y = None

yaxis (label, unit)
set the y axis label and unit
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class sas.sascalc.dataloader.data_info.plottable_2D (data=None, err_data=None,
gx_data=None,
qy_data=None,
q_data=None, mask=None,
dgx_data=None,

dqy_data=None)
Bases: object

Data2D is a place holder for 2D plottables.
data = None

dgx_data = None

dqgy_data = None

err_data = None

mask = None

q data = None

gx_data = None

qy_data = None

xaxis (label, unit)
set the x axis label and unit

xmax = None
xmin = None

yaxis (label, unit)
set the y axis label and unit

ymax None

ymin

None

zaxis (label, unit)
set the z axis label and unit

sas.sascalc.dataloader.file_reader_base class module

This is the base file reader class most file readers should inherit from. All generic functionality required for a file
loader/reader is built into this class

class sas.sascalc.dataloader.file_reader_base_class.FileReader
Bases: object

allow_all = False

convert_data_units (default_g_unit="1/A")
Converts al; data to the sasview default of units of A*{-1} for Q and cm”{-1} for L. :param de-
fault_q_unit: The default Q unit used by Sasview

data_cleanup ()
Clean up the data sets and refresh everything :return: None

deprecated _extensions = ['.asc']
ext = ['.txt']

format_unit (unit=None)
Format units a common way :param unit: :return:

2.1. Contents 303



SasView Documentation, Release 4.2.2

get_file_ contents ()
Reader specific class to access the contents of the file All reader classes that inherit from FileReader
must implement

handle_error_message (msg)
Generic error handler to add an error to the current datainfo to propagate the error up the error chain.
:param msg: Error message

has_converter = True

nextline ()
Returns the next line in the file as a string.

nextlines ()
Returns the next line in the file as a string.

read (filepath)
Basic file reader

Parameters f£ilepath — The full or relative path to a file to be loaded

readall ()
Returns the entire file as a string.

remove_empty q values ()
Remove any point where Q ==

reset_data_list (no_lines=0)
Reset the plottable_1D object

reset_state()
Resets the class state to a base case when loading a new data file so previous data files do not appear a
second time

send_to_output ()
Helper that automatically combines the info and set and then appends it to output

set_all to none()
Set all mutable values to None for error handling purposes

static set_default_1d units (data)
Set the x and y axes to the default 1D units :param data: 1D data set :return:

static set_default 2d units (data)
Set the x and y axes to the default 2D units :param data: 2D data set :return:

sort_data()
Sort 1D data along the X axis for consistency

static splitline (line)
Splits a line into pieces based on common delimiters :param line: A single line of text :return: list of
values

type = ['Text files (*.txt|x.TXT)']
type_name = 'ASCII'

sas.sascalc.dataloader.file_reader_base_class.decode (s)

sas.sascalc.dataloader.loader module

File handler to support different file extensions. Uses reflectometer registry utility.
The default readers are found in the ‘readers’ sub-module and registered by default at initialization time.

To add a new default reader, one must register it in the register_readers method found in readers/__init__.py.
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A utility method (find_plugins) is available to inspect a directory (for instance, a user plug-in directory) and look
for new readers/writers.

class sas.sascalc.dataloader.loader.Loader
Bases: object

Utility class to use the Registry as a singleton.

associate_ file reader (ext, loader)
Append a reader object to readers

Parameters
* ext - file extension [string]
* module — reader object

associate file_ type (ext, module)
Look into a module to find whether it contains a Reader class. If so, append it to readers and (poten-
tially) to the list of writers for the given extension

Parameters
* ext —file extension [string]
* module — module object

find_plugins (directory)
Find plugins in a given directory

Parameters dir — directory to look into to find new readers/writers

get_wildcards ()
Return the list of wildcards

load (file, format=None)
Load a file

Parameters

» file — file name (path)

* format — specified format to use (optional)
Returns Datalnfo object

save (file, data, format)
Save a Datalnfo object to file :param file: file name (path) :param data: Datalnfo object :param format:
format to write the data in

class sas.sascalc.dataloader.loader.Registry
Bases: sas.sascalc.data_util.registry.ExtensionRegistry

Registry class for file format extensions. Readers and writers are supported.

associate_ file_ reader (ext, loader)
Append a reader object to readers

Parameters
* ext - file extension [string]
* module — reader object

associate file_ type (ext, module)
Look into a module to find whether it contains a Reader class. If so, APPEND it to readers and
(potentially) to the list of writers for the given extension

Parameters
* ext —file extension [string]

* module — module object
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find_plugins (dir)
Find readers in a given directory. This method can be used to inspect user plug-in directories to find
new readers/writers.

Parameters dir — directory to search into
Returns number of readers found

load (path, format=None)
Call the loader for the file type of path.

Parameters
* path —file path
» format — explicit extension, to force the use of a particular reader

Defaults to the ascii (multi-column), cansas XML, and cansas NeXuS readers if no reader was regis-
tered for the file’s extension.

lookup_writers (path)
Returns the loader associated with the file type of path.
Raises ValueError if file type is not known.

save (path, data, format=None)
Call the writer for the file type of path.

Raises ValueError if no writer is available. Raises KeyError if format is not available. May raise a
writer-defined exception if writer fails.

sas.sascalc.dataloader.loader_exceptions module

Exceptions specific to loading data.

exception sas.sascalc.dataloader.loader_exceptions.DataReaderException (e=None)
Bases: exceptions.Exception

Exception for files that were able to mostly load, but had minor issues along the way. Any exceptions of
this type should be put into the datainfo.errors

exception sas.sascalc.dataloader.loader_exceptions.DefaultReaderException (e=None)
Bases: exceptions.Exception

Exception for files with no associated reader. This should be thrown by default readers only to tell Loader
to try the next reader.

exception sas.sascalc.dataloader.loader_exceptions.FileContentsException (e=None)
Bases: exceptions.Exception

Exception for files with an associated reader, but with no loadable data. This is useful for catching loader
or file format issues.

exception sas.sascalc.dataloader.loader_exceptions.NoKnownLoaderException (e=None)
Bases: exceptions.Exception

Exception for files with no associated reader based on the file extension of the loaded file. This exception
should only be thrown by loader.py.

sas.sascalc.dataloader.manipulations module

class sas.sascalc.dataloader.manipulations.Binning (min_value, max_value,

n_bins, base=None)
Bases: object

This class just creates a binning object either linear or log
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get_bin_index (value)
The general formula logarithm binning is: bin = floor(N * (log(x) - log(min)) / (log(max) - log(min)))
class sas.sascalc.dataloader.manipulations.Boxavg (x_min=0.0, x_max=0.0,

y_min=0.0, y_max=0.0)
Bases: sas.sascalc.dataloader.manipulations.Boxsum

Perform the average of counts in a 2D region of interest.

class sas.sascalc.dataloader.manipulations.Boxcut (x_min=0.0, x_max=0.0,

y_min=0.0, y_max=0.0)
Bases: object

Find a rectangular 2D region of interest.

class sas.sascalc.dataloader.manipulations.Boxsum (x_min=0.0, x_max=0.0,

y_min=0.0, y_max=0.0)
Bases: object

Perform the sum of counts in a 2D region of interest.

class sas.sascalc.dataloader.manipulations.CircularAverage (r_min=0.0,
r_max=0.0,

bin_width=0.0005)
Bases: object

Perform circular averaging on 2D data
The data returned is the distribution of counts as a function of Q

class sas.sascalc.dataloader.manipulations.Ring (r_min=0, r_max=0, center_x=0,

center_y=0, nbins=36)
Bases: object

Defines a ring on a 2D data set. The ring is defined by r_min, r_max, and the position of the center of the
ring.

The data returned is the distribution of counts around the ring as a function of phi.

Phi_min and phi_max should be defined between 0 and 2*pi in anti-clockwise starting from the x- axis on
the left-hand side

class sas.sascalc.dataloader.manipulations.Ringcut (r_min=0, r_max=0, cen-

ter_x=0, center_y=0)
Bases: object

Defines a ring on a 2D data set. The ring is defined by r_min, r_max, and the position of the center of the
ring.

The data returned is the region inside the ring

Phi_min and phi_max should be defined between 0 and 2*pi in anti-clockwise starting from the x- axis on
the left-hand side

class sas.sascalc.dataloader.manipulations.SectorPhi (r_min, r_max, phi_min=0,
phi_max=6.283185307179586,

nbins=20, base=None)
Bases: sas.sascalc.dataloader.manipulations._Sector

Sector average as a function of phi. I(phi) is return and the data is averaged over Q.
A sector is defined by r_min, r_max, phi_min, phi_max. The number of bin in phi also has to be defined.

class sas.sascalc.dataloader.manipulations.SectoxrQ (r_min, r_max, phi_min=0,
phi_max=6.283185307179586,
nbins=20, base=None)
Bases: sas.sascalc.dataloader.manipulations._Sector

Sector average as a function of Q for both symatric wings. I(Q) is return and the data is averaged over phi.
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A sector is defined by r_min, r_max, phi_min, phi_max. r_min, r_max, phi_min, phi_max >0. The number
of bin in Q also has to be defined.

class sas.sascalc.dataloader.manipulations.Sectorcut (phi_min=0,

phi_max=3.141592653589793)
Bases: object

Defines a sector (major + minor) region on a 2D data set. The sector is defined by phi_min, phi_max, where
phi_min and phi_max are defined by the right and left lines wrt central line.

Phi_min and phi_max are given in units of radian and (phi_max-phi_min) should not be larger than pi

class sas.sascalc.dataloader.manipulations.SlabX (x_min=0.0, x_max=0.0,

y_min=0.0, y_max=0.0,
bin_width=0.001)

Bases: sas.sascalc.dataloader.manipulations._Slab

Compute average 1(Qx) for a region of interest

class sas.sascalc.dataloader.manipulations.Slab¥ (x_min=0.0, x_max=0.0,

sas.

sas.

sas.

sas.

sas.

y_min=0.0, y_max=0.0,

bin_width=0.001)
Bases: sas.sascalc.dataloader.manipulations._Slab

Compute average I(Qy) for a region of interest

sascalc.dataloader.manipulations.£flip_phi (phi)
Correct phi to within the 0 <= to <= 2pi range

Returns phi in >=0 and <=2Pi

sascalc.dataloader.manipulations.get_dq data (data2D)

Get the dq for resolution averaging The pinholes and det. pix contribution present in both direction of the
2D which must be subtracted when converting to 1D: dq_overlap should calculated ideally at q = 0. Note
This method works on only pinhole geometry. Extrapolate dqx(r) and dqy(phi) at q = 0, and take an average.

sascalc.dataloader.manipulations.get_intercept (q,q 0,q_1I)
Returns the fraction of the side at which the g-value intercept the pixel, None otherwise. The values returned
is the fraction ON THE SIDE OF THE LOWEST Q.

o to——— + <-—-— pixel size

Q0 ———————- Q ———- Q_1 <-—- equivalent Q range

if 01 > Q_0, A is returned

if Q1 < Q_0, B is returned

if Q is outside the range of [Q_0, Q_1], None is returned

sascalc.dataloader.manipulations.get_pixel_ fraction (gmax, ¢_00, ¢ _0l,

q_10,q_11)
Returns the fraction of the pixel defined by the four corners (q_00, q_01, q_10, q_11) that has q < gmax.:

y=1 Fom +

y=0 f—— +

sascalc.dataloader.manipulations.get_pixel_ fraction_square (x, xmin,

) ) xmax)
Return the fraction of the length from xmin to x.:

308

Chapter 2. Developer Documentation




SasView Documentation, Release 4.2.2

Parameters
* x —x-value
* xmin — minimum X for the length considered
* xmax — minimum X for the length considered

Returns (x-xmin)/(xmax-xmin) when xmin < X < xmax

sas.sascalc.dataloader.manipulations.get_q (dx, dy, det_dist, wavelength)
Parameters
¢ dx — x-distance from beam center [mm)]
* dy - y-distance from beam center [mm]
Returns g-value at the given position

sas.sascalc.dataloader.manipulations.get_q compo (dx, dy, det_dist, wavelength,

compo=None)
This reduces tiny error at very large q. Implementation of this func is not started yet.<—ToDo

sas.sascalc.dataloader.manipulations.reader2D_converter (data2d=None)
convert old 2d format opened by ThorReader or danse_reader to new Data2D format This is mainly used by
the Readers

Parameters data2d — 2d array of Data2D object
Returns 1d arrays of Data2D object

Module contents

sas.sascalc.file_converter package

Submodules
sas.sascalc.file_converter.ascii2d_loader module

ASCII 2D Loader

class sas.sascalc.file_converter.ascii2d_loader.ASCII2DLoader (data_path)
Bases: object

load ()
Load the data from the file into a Data2D object

Returns A Data2D instance containing data from the file

Raises ValueError — Raises a ValueError if the file is incorrectly formatted

sas.sascalc.file_converter.bsl_loader module

class sas.sascalc.file_converter.bsl_loader.BSLLoader (filename)
Bases: CLoader

Loads 2D SAS data from a BSL file. CLoader is a C extension (found in c_ext/bsl_loader.c)
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See http://www.diamond.ac.uk/Beamlines/Soft-Condensed- Matter/small-angle/SAXS-Software/CCP13/
BSL.html for more info on the BSL file format.

load_frames (frames)

exception sas.sascalc.file_converter.bsl_loader.BSLParsingError
Bases: exceptions.Exception

sas.sascalc.file_converter.cansas_writer module

class sas.sascalc.file_converter.cansas_writer.CansasWriter (xml/=None,

schema=None)
Bases: sas.sascalc.dataloader.readers.cansas_reader.Reader

write (filename, frame_data, sasentry_attrs=None)
Werite the content of a DatalD as a CanSAS XML file

Parameters
e filename — name of the file to write

* datainfo — DatalD object

sas.sascalc.file_converter.nxcansas_writer module

NXcanSAS 1/2D data reader for writing HDF5 formatted NXcanSAS files.

class sas.sascalc.file_converter.nxcansas_writer.NXcanSASWriter
Bases: sas.sascalc.dataloader.readers.cansas_reader._HDF5.Reader

A class for writing in NXcanSAS data files. Any number of data sets may be written to the file. Currently
1D and 2D SAS data sets are supported

NXcanSAS spec:  http://download.nexusformat.org/sphinx/classes/contributed_definitions/NXcanSAS.
html

Dependencies The NXcanSAS writer requires hSpy => v2.5.0 or later.

write (dataset, filename)
Write an array of Datald or Data2D objects to an NXcanSAS file, as one SASEntry with multiple
SASData elements. The metadata of the first elememt in the array will be written as the SASentry
metadata (detector, instrument, sample, etc).

Parameters
* dataset — A list of DatalD or Data2D objects to write

e filename — Where to write the NXcanSAS file

sas.sascalc.file_converter.otoko_loader module

Here we handle loading of “OTOKO” data (for more info about this format see the comment in load_otoko_data).
Given the paths of header and data files, we aim to load the data into numpy arrays for use later.

class sas.sascalc.file_converter.otoko_loader.CStyleStruct (**kwds)
A nice and easy way to get “C-style struct” functionality.

class sas.sascalc.file_converter.otoko_loader.OTOKOData (g_axis, data_axis)

class sas.sascalc.file_converter.otoko_loader.OTOKOLoader (qaxis_path,

data_path)
Bases: object
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load_otoko_data ()
Loads “OTOKO” data, which is a format that stores each axis separately. An axis is represented by a
“header” file, which in turn will give details of one or more binary files where the actual data is stored.

Given the paths of two header files, this function will load each axis in turn. If loading is successful
then an instance of the OTOKOData class will be returned, else an exception will be raised.

For more information on the OTOKO file format, please see: http://www.diamond.ac.uk/Home/
Beamlines/small-angle/SAXS-Software/CCP13/ XOTOKO.html

exception sas.sascalc.file_converter.otoko_loader.OTOKOParsingError
Bases: exceptions.Exception

sas.sascalc.file_converter.red2d_writer module

class sas.sascalc.file_converter.red2d_writer.Red2DWriter
Bases: sas.sascalc.dataloader.readers.red2d_reader.Reader

write (filename, data, thread)
Write to .dat

Parameters
¢ filename - file name to write

e data —data2D

Module contents

sas.sascalc.fit package

Submodules
sas.sascalc.fit.AbstractFitEngine module

class sas.sascalc.fit.AbstractFitEngine.FResult (model=None, param_list=None,

data=None)
Bases: object

Storing fit result
print_summary ()
set_fitness (fitness)
set_model (model)

exception sas.sascalc.fit.AbstractFitEngine.FitAbort
Bases: exceptions.Exception

Exception raise to stop the fit

class sas.sascalc.fit.AbstractFitEngine.FitArrange

add_data (data)
add_data fill a self.data_list with data to fit

Parameters data — Data to add in the list
get_data()
Returns list of data data_list

get_model ()
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Returns saved model

get_to_fit ()
return self.selected value

remove_ data (data)
Remove one element from the list

Parameters data — Data to remove from data_list

set_model (model)
set_model save a copy of the model

Parameters model — the model being set

set_to_fit (value=0)
set self.selected to O or 1 for other values raise an exception

Parameters value — integer between O or 1

class sas.sascalc.fit.AbstractFitEngine.FitDatalD (x, y, dx=None, dy=None,
smearer=None, data=None,

lam=None, dlam=None)
Bases: sas.sascalc.dataloader.data_info.DatalD

Wrapper class for SAS data FitDatalD inherits from Datal.oader.data_info.DatalD. Implements a way to
get residuals from data.

get_fit_range()
Return the range of data.x to fit

residuals (fn)
Compute residuals.

If self.smearer has been set, use if to smear the data before computing chi squared.
Parameters £n — function that return model value
Returns residuals
residuals_deriv (model, pars=[])
Returns residuals derivatives .
Note in this case just return empty array

set_fit_range (gmin=None, gmax=None)
to set the fit range

size ()
Number of measurement points in data set after masking, etc.

class sas.sascalc.fit.AbstractFitEngine.FitData2D (sas_datald, data=None,

err_data=None)
Bases: sas.sascalc.dataloader.data_info.DatalD

Wrapper class for SAS data

get_fit_range()
return the range of data.x to fit

residuals (fn)
return the residuals

residuals_deriv (model, pars=[])
Returns residuals derivatives .
Note in this case just return empty array

set_data (sas_data2d, gmin=None, gmax=None)
Determine the correct qx_data and qy_data within range to fit
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set_fit_range (gmin=None, gmax=None)
To set the fit range

set_smearer (smearer)
Set smearer

size ()
Number of measurement points in data set after masking, etc.

class sas.sascalc.fit.AbstractFitEngine.FitEngine

get_model (id)
Parameters id - id is key in the dictionary containing the model to return
Returns a model at this id or None if no FitArrange element was created with this id

get_problem_to_fit (id)
return the self.selected value of the fit problem of id

Parameters id - the id of the problem

remove_fit_problem (id)
remove fitarrange in id

select_problem_for fit (id, value)
select a couple of model and data at the id position in dictionary and set in self.selected value to value

Parameters value — the value to allow fitting. can only have the value one or zero

set_data (data, id, smearer=None, gmin=None, gmax=None)
Receives plottable, creates a list of data to fit,set data in a FitArrange object and adds that object in a
dictionary with key id.

Parameters
* data — data added
* id - unique key corresponding to a fitArrange object with data

set_model (model, id, pars=[], constraints=[], data=None)
set a model on a given in the fit engine.

Parameters
* model - sas.models type
e id - is the key of the fitArrange dictionary where model is saved as a value
* pars — the list of parameters to fit

e constraints - list of tuple (name of parameter, value of parameters) the value
of parameter must be a string to constraint 2 different parameters. Example: we
want to fit 2 model M1 and M2 both have parameters A and B. constraints can be
constraints = [(M1.A, M2.B+2), (M1.B= M2.A *5),...,]

Note pars must contains only name of existing model’s parameters

class sas.sascalc.fit.AbstractFitEngine.FitHandler
Bases: object

Abstract interface for fit thread handler.
The methods in this class are called by the optimizer as the fit progresses.

Note that it is up to the optimizer to call the fit handler correctly, reporting all status changes and maintaining
the ‘done’ flag.

abort ()
Fit was aborted.
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done = False
True when the fit job is complete

error (msg)
Model had an error; print traceback

finalize ()
Fit is complete; best results are reported

improvement ()
Called when a result is observed which is better than previous results from the fit.

result is a FitResult object, with parameters, #calls and fitness.

progress (current, expected)
Called each cycle of the fit, reporting the current and the expected amount of work. The meaning of
these values is optimizer dependent, but they can be converted into a percent complete using (100*cur-
rent)//expected.

Progress is updated each iteration of the fit, whatever that means for the particular optimization algo-
rithm. It is called after any calls to improvement for the iteration so that the update handler can control
I/0 bandwidth by suppressing intermediate improvements until the fit is complete.

result = None
The current best result of the fit

set_result (result=None)
update_fit (last=False)

class sas.sascalc.fit.AbstractFitEngine.Model (sas_model, sas_data=None, **kw)
Fit wrapper for SAS models.

eval (x)
Override eval method of model.

Parameters x — the x value used to compute a function

eval_derivs (x, pars=[])
Evaluate the model and derivatives wrt pars at x.

pars is a list of the names of the parameters for which derivatives are desired.

This method needs to be specialized in the model to evaluate the model function. Alternatively, the
model can implement is own version of residuals which calculates the residuals directly instead of
calling eval.

get_params (fitparams)
return a list of value of parameter to fit

Parameters fitparams — list of parameters name to fit
set (**kw)

set_params (paramlist, params)
Set value for parameters to fit

Parameters params - list of value for parameters to fit

sas.sascalc.fit. BumpsFitting module

BumpsFitting module runs the bumps optimizer.

class sas.sascalc.fit.BumpsFitting.BumpsFit
Bases: sas.sascalc.fit.AbstractFitEngine.FitEngine

Fit a model using bumps.
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fit (msg_g=None, ¢g=None, handler=None, curr_thread=None, ftol=1.49012¢-08, re-
set_flag=False)

class sas.sascalc.fit.BumpsFitting.BumpsMonitor (handler, max_step, pars, dof)
Bases: object

config_history (history)

class sas.sascalc.fit.BumpsFitting.ConvergenceMonitor
Bases: object

ConvergenceMonitor contains population summary statistics to show progress of the fit. This is a list [ (best,
0%, 25%, 50%, 15%, 100%) ] or just a list [ (best, ) ] if population size is 1.

config_history (history)

class sas.sascalc.fit.BumpsFitting.ParameterExpressions (models)
Bases: object

class sas.sascalc.fit.BumpsFitting.Progress (history, max_step, pars, dof)
Bases: object

class sas.sascalc.fit.BumpsFitting.SasFitness (model,data, fitted=[], constraints={},

initial_values=None, **kw)
Bases: object

Wrap SAS model as a bumps fitness object
nllf ()

numpoints ()

parameters ()

residuals ()

set_fitted (param_list)
Flag a set of parameters as fitted parameters.

theory ()
update ()
sas.sascalc.fit.BumpsFitting.get_fitter ()

sas.sascalc.fit.BumpsFitting.xrun_bumps (problem, handler, curr_thread)

sas.sascalc.fit.Loader module

class sas.sascalc.fit.Loader.Load (x=None, y=None, dx=None, dy=None)
This class is loading values from given file or value giving by the user

get_filename ()
return the file’s path

get_values ()
Return x, y, dx, dy

load data (data)
Return plottable

set_filename (path=None)
Store path into a variable.If the user doesn’t give a path as a parameter a pop-up window appears to
select the file.

Parameters path — the path given by the user

set_values ()
Store the values loaded from file in local variables
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sas.sascalc.fit.MultiplicationModel module

class sas.sascalc.fit.MultiplicationModel.MultiplicationModel (p_model,

s_model)
Bases: sas.sascalc.calculator.BaseComponent.BaseComponent

Use for P(Q)*S(Q); function call must be in the order of P(Q) and then S(Q): The model parameters are
combined from both models, P(Q) and S(Q), except 1) ‘radius_effective’ of S(Q) which will be calculated

from P(Q) via calculate_ER(), and 2) ‘scale’ in P model which is synchronized w/ volfraction in S then P*S
is multiplied by a new parameter, ‘scale_factor’. The polydispersion is applicable only to P(Q), not to S(Q).

Note: P(Q) refers to ‘form factor’ model while S(Q) does to ‘structure factor’.

evalDistribution (x=/])
Evaluate the model in cartesian coordinates

Parameters x — input q[], or [gx[], qy[]]
Returns scattering function P(q[])

£ill description (p_model, s_model)
Fill the description for P(Q)*S(Q)

getProfile ()
Get SLD profile of p_model if exists

Returns (r, beta) where r is a list of radius of the transition points beta is a list of the corre-
sponding SLD values

Note: This works only for func_shell num = 2 (exp function).

run (x=0.0)
Evaluate the model

Parameters x — input g-value (float or [float, float] as [, theta])
Returns (scattering function value)

runXY (x=0.0)
Evaluate the model

Parameters x — input g-value (float or [float, float] as [gx, qy])
Returns scattering function value

setParam (name, value)
Set the value of a model parameter

Parameters
* name — name of the parameter
* value - value of the parameter

set_dispersion (parameter, dispersion)
Set the dispersion object for a model parameter

Parameters parameter — name of the parameter [string]

Dispersion dispersion object of type DispersionModel
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sas.sascalc.fit.expression module

Parameter expression evaluator.

For systems in which constraints are expressed as string expressions rather than python code,
compile constraints () can construct an expression evaluator that substitutes the computed values of the
e