.. _lamellar-stack-caille: lamellar_stack_caille ======================================================= Random lamellar sheet with Caille structure factor ================ ================================= ============ ============= Parameter Description Units Default value ================ ================================= ============ ============= scale Scale factor or Volume fraction None 1 background Source background |cm^-1| 0.001 thickness sheet thickness |Ang| 30 Nlayers Number of layers None 20 d_spacing lamellar d-spacing of Caille S(Q) |Ang| 400 Caille_parameter Caille parameter |Ang^-2| 0.1 sld layer scattering length density |1e-6Ang^-2| 6.3 sld_solvent Solvent scattering length density |1e-6Ang^-2| 1 ================ ================================= ============ ============= The returned value is scaled to units of |cm^-1| |sr^-1|, absolute scale. This model provides the scattering intensity, $I(q) = P(q) S(q)$, for a lamellar phase where a random distribution in solution are assumed. Here a Caille $S(q)$ is used for the lamellar stacks. **Definition** The scattering intensity $I(q)$ is .. math:: I(q) = 2\pi \frac{P(q)S(q)}{q^2\delta } The form factor is .. math:: P(q) = \frac{2\Delta\rho^2}{q^2}\left(1-\cos q\delta \right) and the structure factor is .. math:: S(q) = 1 + 2 \sum_1^{N-1}\left(1-\frac{n}{N}\right) \cos(qdn)\exp\left(-\frac{2q^2d^2\alpha(n)}{2}\right) where .. math:: :nowrap: \begin{align*} \alpha(n) &= \frac{\eta_{cp}}{4\pi^2} \left(\ln(\pi n)+\gamma_E\right) && \\ \gamma_E &= 0.5772156649 && \text{Euler's constant} \\ \eta_{cp} &= \frac{q_o^2k_B T}{8\pi\sqrt{K\overline{B}}} && \text{Caille constant} \end{align*} Here $d$ = (repeat) d_spacing, $\delta$ = bilayer thickness, the contrast $\Delta\rho$ = SLD(headgroup) - SLD(solvent), $K$ = smectic bending elasticity, $B$ = compression modulus, and $N$ = number of lamellar plates (*n_plates*). NB: **When the Caille parameter is greater than approximately 0.8 to 1.0, the assumptions of the model are incorrect.** And due to a complication of the model function, users are responsible for making sure that all the assumptions are handled accurately (see the original reference below for more details). Non-integer numbers of stacks are calculated as a linear combination of results for the next lower and higher values. The 2D scattering intensity is calculated in the same way as 1D, where the $q$ vector is defined as .. math:: q = \sqrt{q_x^2 + q_y^2} .. figure:: img/lamellar_stack_caille_autogenfig.png 1D plot corresponding to the default parameters of the model. **Source** :download:`lamellar_stack_caille.py ` $\ \star\ $ :download:`lamellar_stack_caille.c ` **References** #. F Nallet, R Laversanne, and D Roux, *J. Phys. II France*, 3, (1993) 487-502 #. J Berghausen, J Zipfel, P Lindner, W Richtering, *J. Phys. Chem. B*, 105, (2001) 11081-11088 **Authorship and Verification** * **Author:** * **Last Modified by:** * **Last Reviewed by:**