.. _lamellar-stack-paracrystal: lamellar_stack_paracrystal ======================================================= Random lamellar sheet with paracrystal structure factor =========== ============================================== ============ ============= Parameter Description Units Default value =========== ============================================== ============ ============= scale Scale factor or Volume fraction None 1 background Source background |cm^-1| 0.001 thickness sheet thickness |Ang| 33 Nlayers Number of layers None 20 d_spacing lamellar spacing of paracrystal stack |Ang| 250 sigma_d Sigma (polydispersity) of the lamellar spacing |Ang| 0 sld layer scattering length density |1e-6Ang^-2| 1 sld_solvent Solvent scattering length density |1e-6Ang^-2| 6.34 =========== ============================================== ============ ============= The returned value is scaled to units of |cm^-1| |sr^-1|, absolute scale. This model calculates the scattering from a stack of repeating lamellar structures. The stacks of lamellae (infinite in lateral dimension) are treated as a paracrystal to account for the repeating spacing. The repeat distance is further characterized by a Gaussian polydispersity. **This model can be used for large multilamellar vesicles.** **Definition** In the equations below, - *scale* is used instead of the mass per area of the bilayer $\Gamma_m$ (this corresponds to the volume fraction of the material in the bilayer, *not* the total excluded volume of the paracrystal), - *sld* $-$ *sld_solvent* is the contrast $\Delta \rho$, - *thickness* is the layer thickness $t$, - *Nlayers* is the number of layers $N$, - *d_spacing* is the average distance between adjacent layers $\langle D \rangle$, and - *sigma_d* is the relative standard deviation of the Gaussian layer distance distribution $\sigma_D / \langle D \rangle$. The scattering intensity $I(q)$ is calculated as .. math:: I(q) = 2\pi\Delta\rho^2\Gamma_m\frac{P_\text{bil}(q)}{q^2} Z_N(q) The form factor of the bilayer is approximated as the cross section of an infinite, planar bilayer of thickness $t$ (compare the equations for the lamellar model). .. math:: P_\text{bil}(q) = \left(\frac{\sin(qt/2)}{qt/2}\right)^2 $Z_N(q)$ describes the interference effects for aggregates consisting of more than one bilayer. The equations used are (3-5) from the Bergstrom reference: .. math:: Z_N(q) = \frac{1 - w^2}{1 + w^2 - 2w \cos(q \langle D \rangle)} + x_N S_N + (1 - x_N) S_{N+1} where .. math:: S_N(q) = \frac{a_N}{N}[1 + w^2 - 2 w \cos(q \langle D \rangle)]^2 and .. math:: a_N &= 4w^2 - 2(w^3 + w) \cos(q \langle D \rangle) \\ &\quad - 4w^{N+2}\cos(Nq \langle D \rangle) + 2 w^{N+3}\cos[(N-1)q \langle D \rangle] + 2w^{N+1}\cos[(N+1)q \langle D \rangle] for the layer spacing distribution $w = \exp(-\sigma_D^2 q^2/2)$. Non-integer numbers of stacks are calculated as a linear combination of the lower and higher values .. math:: N_L = x_N N + (1 - x_N)(N+1) The 2D scattering intensity is the same as 1D, regardless of the orientation of the $q$ vector which is defined as .. math:: q = \sqrt{q_x^2 + q_y^2} .. figure:: img/lamellar_stack_paracrystal_autogenfig.png 1D plot corresponding to the default parameters of the model. **Source** :download:`lamellar_stack_paracrystal.py ` $\ \star\ $ :download:`lamellar_stack_paracrystal.c ` **Reference** #. M Bergstrom, J S Pedersen, P Schurtenberger, S U Egelhaaf, *J. Phys. Chem. B*, 103 (1999) 9888-9897 **Authorship and Verification** * **Author:** * **Last Modified by:** * **Last Reviewed by:**