.. _pearl-necklace: pearl_necklace ======================================================= Colloidal spheres chained together with no preferential orientation ============ ================================================== ============ ============= Parameter Description Units Default value ============ ================================================== ============ ============= scale Scale factor or Volume fraction None 1 background Source background |cm^-1| 0.001 radius Mean radius of the chained spheres |Ang| 80 edge_sep Mean separation of chained particles |Ang| 350 thick_string Thickness of the chain linkage |Ang| 2.5 num_pearls Number of pearls in the necklace (must be integer) none 3 sld Scattering length density of the chained spheres |1e-6Ang^-2| 1 sld_string Scattering length density of the chain linkage |1e-6Ang^-2| 1 sld_solvent Scattering length density of the solvent |1e-6Ang^-2| 6.3 ============ ================================================== ============ ============= The returned value is scaled to units of |cm^-1| |sr^-1|, absolute scale. This model provides the form factor for a pearl necklace composed of two elements: *N* pearls (homogeneous spheres of radius *R*) freely jointed by *M* rods (like strings - with a total mass *Mw* = *M* \* *m*\ :sub:`r` + *N* \* *m*\ :sub:`s`, and the string segment length (or edge separation) *l* (= *A* - 2\ *R*)). *A* is the center-to-center pearl separation distance. .. figure:: img/pearl_necklace_geometry.jpg Pearl Necklace schematic **Definition** The output of the scattering intensity function for the pearl_necklace is given by (Schweins, 2004) .. math:: I(q)=\frac{ \text{scale} }{V} \cdot \frac{(S_{ss}(q)+S_{ff}(q)+S_{fs}(q))} {(M \cdot m_f + N \cdot m_s)^2} + \text{bkg} where .. math:: S_{ss}(q) &= 2m_s^2\psi^2(q)\left[\frac{N}{1-sin(qA)/qA}-\frac{N}{2}- \frac{1-(sin(qA)/qA)^N}{(1-sin(qA)/qA)^2}\cdot\frac{sin(qA)}{qA}\right] \\ S_{ff}(q) &= m_r^2\left[M\left\{2\Lambda(q)-\left(\frac{sin(ql/2)}{ql/2}\right)\right\}+ \frac{2M\beta^2(q)}{1-sin(qA)/qA}-2\beta^2(q)\cdot \frac{1-(sin(qA)/qA)^M}{(1-sin(qA)/qA)^2}\right] \\ S_{fs}(q) &= m_r \beta (q) \cdot m_s \psi (q) \cdot 4\left[ \frac{N-1}{1-sin(qA)/qA}-\frac{1-(sin(qA)/qA)^{N-1}}{(1-sin(qA)/qA)^2} \cdot \frac{sin(qA)}{qA}\right] \\ \psi(q) &= 3 \cdot \frac{sin(qR)-(qR)\cdot cos(qR)}{(qR)^3} \\ \Lambda(q) &= \frac{\int_0^{ql}\frac{sin(t)}{t}dt}{ql} \\ \beta(q) &= \frac{\int_{qR}^{q(A-R)}\frac{sin(t)}{t}dt}{ql} where the mass *m*\ :sub:`i` is (SLD\ :sub:`i` - SLD\ :sub:`solvent`) \* (volume of the *N* pearls/rods). *V* is the total volume of the necklace. .. note:: *num_pearls* must be an integer. The 2D scattering intensity is the same as $P(q)$ above, regardless of the orientation of the *q* vector. .. figure:: img/pearl_necklace_autogenfig.png 1D plot corresponding to the default parameters of the model. **Source** :download:`pearl_necklace.py ` $\ \star\ $ :download:`pearl_necklace.c ` $\ \star\ $ :download:`sas_3j1x_x.c ` $\ \star\ $ :download:`sas_Si.c ` **References** #. R Schweins and K Huber, *Particle Scattering Factor of Pearl Necklace Chains*, *Macromol. Symp.* 211 (2004) 25-42 2004 #. L. Onsager, *Ann. New York Acad. Sci.*, 51 (1949) 627-659 **Authorship and Verification** * **Author:** * **Last Modified by:** Andrew Jackson **Date:** March 28, 2019 * **Last Reviewed by:** Steve King **Date:** March 28, 2019