.. _superball: superball ======================================================= Superball with uniform scattering length density. =========== ================================================== ============ ============= Parameter Description Units Default value =========== ================================================== ============ ============= scale Scale factor or Volume fraction None 1 background Source background |cm^-1| 0.001 sld Superball scattering length density |1e-6Ang^-2| 4 sld_solvent Solvent scattering length density |1e-6Ang^-2| 1 length_a Cube edge length of the superball |Ang| 50 exponent_p Exponent describing the roundness of the superball None 2.5 theta c axis to beam angle degree 0 phi rotation about beam degree 0 psi rotation about c axis degree 0 =========== ================================================== ============ ============= The returned value is scaled to units of |cm^-1| |sr^-1|, absolute scale. **Definition** .. figure:: img/superball_realSpace.png Superball visualisation for varied values of the parameter p. This model calculates the scattering of a superball, which represents a cube with rounded edges. It can be used to describe nanoparticles that deviate from the perfect cube shape as it is often observed experimentally [#WetterskogSuperball]_. The shape is described by .. math:: x^{2p} + y^{2p} + z^{2p} \leq \biggl( \frac{a}{2} \biggr)^{2p} with $a$ the cube edge length of the superball and $p$ a parameter that describes the roundness of the edges. In the limiting cases $p=1$ the superball corresponds to a sphere with radius $R = a/2$ and for $p = \infty$ to a cube with edge length $a$. The exponent $p$ is related to $a$ and the face diagonal $d$ via .. math:: p = \frac{1}{1 + 2 \mathrm{log}_2 (a/d)}. .. figure:: img/superball_geometry2d.png Cross-sectional view of a superball showing the principal axis length $a$, the face-diagonal $d$ and the superball radius $R$. The oriented form factor is determined by solving .. math:: p_o(\vec{q}) =& \int_{V} \mathrm{d} \vec{r} e^{i \vec{q} \cdot \vec{r}}\\ =& \frac{a^3}{8} \int_{-1}^{1} \mathrm{d} x \int_{-\gamma}^{\gamma} \mathrm{d} y \int_{-\zeta}^{\zeta} \mathrm{d} z e^{i a (q_x x + q_y y + q_z z) / 2}\\ =& \frac{a^2}{2 q_z} \int_{-1}^{1} \mathrm{d} x \int_{-\gamma}^{\gamma} \mathrm{d} y e^{i a(q_x x + q_y y)/2} \sin(q_z a \zeta / 2), with .. math:: \gamma =& \sqrt[2p]{1-x^{2p}}, \\ \zeta =& \sqrt[2p]{1-x^{2p} -y^{2p}}. The integral can be transformed to .. math:: p_o(\vec{q}) = \frac{2 a^2}{q_z} \int_{0}^{1} \mathrm{d} x \, \cos \biggl(\frac{a q_x x}{2} \biggr) \int_{0}^{\gamma} \mathrm{d} y \, \cos \biggl( \frac{a q_y y}{2} \biggr) \sin \biggl( \frac{a q_z \zeta}{2} \biggr), which can be solved numerically. The orientational average is then obtained by calculating .. math:: P(q) = \int_0^{\tfrac{\pi}{2}} \mathrm{d} \varphi \int_0^{\tfrac{\pi}{2}} \mathrm{d} \theta \, \sin (\theta) | p_o(\vec{q}) |^2 with .. math:: \vec{q} &= q \begin{pmatrix} \cos (\varphi) \sin (\theta)\\ \sin (\varphi) \sin(\theta)\\ \cos (\theta)\end{pmatrix} The implemented orientationally averaged superball model is then fully given by [#DresenSuperball]_ .. math:: I(q) = \mathrm{scale} (\Delta \rho)^2 P(q) + \mathrm{background}. **FITTING NOTES** **Validation** The code is validated by reproducing the spherical form factor implemented in SasView for $p = 1$ and the parallelepiped form factor with $a = b = c$ for $p = 1000$. The form factors match in the first order oscillation with a precision in the order of $10^{-4}$. The agreement worsens for higher order oscillations and beyond the third order oscillations a higher order Gauss quadrature rule needs to be used to keep the agreement below $10^{-3}$. This is however avoided in this implementation to keep the computation time fast. .. figure:: img/superball_autogenfig.png 1D and 2D plots corresponding to the default parameters of the model. **Source** :download:`superball.py ` $\ \star\ $ :download:`superball.c ` $\ \star\ $ :download:`sas_gamma.c ` $\ \star\ $ :download:`gauss20.c ` **References** .. [#WetterskogSuperball] E. Wetterskog, A. Klapper, S. Disch, E. Josten, R. P. Hermann, U. Rücker, T. Brückel, L. Bergström and G. Salazar-Alvarez, *Nanoscale*, 8 (2016) 15571 .. [#DresenSuperball] D. Dresen, A. Qdemat, S. Ulusoy, F. Mees, D. Zakutna, E. Wetterskog, E. Kentzinger, G. Salazar-Alvarez, S. Disch, *J. Phys. Chem. C* (2021), doi: 10.1021/acs.jpcc.1c06082 **Source** `superball.py `_ `superball.c `_ **Authorship and Verification** * **Author:** Dominique Dresen **Date:** March 27, 2019 * **Last Modified by:** Dominique Dresen **Date:** March 27, 2019 * **Last Reviewed by:** Dirk Honecker **Date:** November 05, 2021 * **Source added by :** Dominique Dresen **Date:** March 27, 2019