.. _teubner-strey: teubner_strey ======================================================= Teubner-Strey model of microemulsions ============= =============================== ============ ============= Parameter Description Units Default value ============= =============================== ============ ============= scale Scale factor or Volume fraction None 1 background Source background |cm^-1| 0.001 volfraction_a Volume fraction of phase a None 0.5 sld_a SLD of phase a |1e-6Ang^-2| 0.3 sld_b SLD of phase b |1e-6Ang^-2| 6.3 d Domain size (periodicity) |Ang| 100 xi Correlation length |Ang| 30 ============= =============================== ============ ============= The returned value is scaled to units of |cm^-1| |sr^-1|, absolute scale. **Definition** This model calculates the scattered intensity of a two-component system using the Teubner-Strey model. Unlike :ref:`dab` this function generates a peak. A two-phase material can be characterised by two length scales - a correlation length and a domain size (periodicity). The original paper by Teubner and Strey defined the function as: .. math:: I(q) \propto \frac{1}{a_2 + c_1 q^2 + c_2 q^4} + \text{background} where the parameters $a_2$, $c_1$ and $c_2$ are defined in terms of the periodicity, $d$, and correlation length $\xi$ as: .. math:: a_2 &= \biggl[1+\bigl(\frac{2\pi\xi}{d}\bigr)^2\biggr]^2\\ c_1 &= -2\xi^2\bigl(\frac{2\pi\xi}{d}\bigr)^2+2\xi^2\\ c_2 &= \xi^4 and thus, the periodicity, $d$ is given by .. math:: d = 2\pi\left[\frac12\left(\frac{a_2}{c_2}\right)^{1/2} - \frac14\frac{c_1}{c_2}\right]^{-1/2} and the correlation length, $\xi$, is given by .. math:: \xi = \left[\frac12\left(\frac{a_2}{c_2}\right)^{1/2} + \frac14\frac{c_1}{c_2}\right]^{-1/2} Here the model is parameterised in terms of $d$ and $\xi$ and with an explicit volume fraction for one phase, $\phi_a$, and contrast, $\delta\rho^2 = (\rho_a - \rho_b)^2$ : .. math:: I(q) = \frac{8\pi\phi_a(1-\phi_a)(\Delta\rho)^2c_2/\xi} {a_2 + c_1q^2 + c_2q^4} where :math:`8\pi\phi_a(1-\phi_a)(\Delta\rho)^2c_2/\xi` is the constant of proportionality from the first equation above. In the case of a microemulsion, $a_2 > 0$, $c_1 < 0$, and $c_2 >0$. For 2D data, scattering intensity is calculated in the same way as 1D, where the $q$ vector is defined as .. math:: q = \sqrt{q_x^2 + q_y^2} .. figure:: img/teubner_strey_autogenfig.png 1D plot corresponding to the default parameters of the model. **Source** :download:`teubner_strey.py ` **References** #. M Teubner, R Strey, *J. Chem. Phys.*, 87 (1987) 3195 #. K V Schubert, R Strey, S R Kline and E W Kaler, *J. Chem. Phys.*, 101 (1994) 5343 #. H Endo, M Mihailescu, M. Monkenbusch, J Allgaier, G Gompper, D Richter, B Jakobs, T Sottmann, R Strey, and I Grillo, *J. Chem. Phys.*, 115 (2001), 580 **Authorship and Verification** * **Author:** * **Last Modified by:** * **Last Reviewed by:**