sas.qtgui.Perspectives.SizeDistribution package¶
Subpackages¶
Submodules¶
sas.qtgui.Perspectives.SizeDistribution.SizeDistributionLogic module¶
- class sas.qtgui.Perspectives.SizeDistribution.SizeDistributionLogic.SizeDistributionLogic(data=None)¶
Bases:
objectAll the data-related logic. This class deals exclusively with Data1D/2D No QStandardModelIndex here.
- __dict__ = mappingproxy({'__module__': 'sas.qtgui.Perspectives.SizeDistribution.SizeDistributionLogic', '__doc__': '\n All the data-related logic. This class deals exclusively with Data1D/2D\n No QStandardModelIndex here.\n ', '__init__': <function SizeDistributionLogic.__init__>, 'data': <property object>, 'isLoadedData': <function SizeDistributionLogic.isLoadedData>, 'setDataProperties': <function SizeDistributionLogic.setDataProperties>, 'computeDataRange': <function SizeDistributionLogic.computeDataRange>, 'computeBackground': <function SizeDistributionLogic.computeBackground>, 'computeTrustRange': <function SizeDistributionLogic.computeTrustRange>, 'fitBackground': <function SizeDistributionLogic.fitBackground>, 'newDataPlot': <function SizeDistributionLogic.newDataPlot>, 'newSizeDistrPlot': <function SizeDistributionLogic.newSizeDistrPlot>, '__dict__': <attribute '__dict__' of 'SizeDistributionLogic' objects>, '__weakref__': <attribute '__weakref__' of 'SizeDistributionLogic' objects>, '__annotations__': {}})¶
- __doc__ = '\n All the data-related logic. This class deals exclusively with Data1D/2D\n No QStandardModelIndex here.\n '¶
- __init__(data=None)¶
- __module__ = 'sas.qtgui.Perspectives.SizeDistribution.SizeDistributionLogic'¶
- __weakref__¶
list of weak references to the object
- computeBackground(constant: float, scale: float, power: float)¶
- computeDataRange()¶
Compute the minimum and the maximum range of the data
- computeTrustRange(qmin: float, qmax: float)¶
Compute the trusted range (green area in Irena)
- property data¶
- fitBackground(power: float | None, qmin: float, qmax: float) list[float]¶
Estimate the background power law, scale * q^(power) :param power: if a float is given, the power is fixed; if None, the power is fitted :return: fit parameters; [scale] if power is fixed, or [scale, power] if power is fitted
- isLoadedData()¶
accessor
- newDataPlot()¶
Create a new 1D data instance
- newSizeDistrPlot(result: MaxEntResult, qmin: float, qmax: float)¶
Create a new 1D data instance based on fitting results
- setDataProperties()¶
Analyze data and set up some properties important for the Presentation layer
sas.qtgui.Perspectives.SizeDistribution.SizeDistributionPerspective module¶
- class sas.qtgui.Perspectives.SizeDistribution.SizeDistributionPerspective.SizeDistributionWindow(parent=None)¶
Bases:
QDialog,Ui_SizeDistribution,PerspectiveThe main window for the Size Distribution perspective.
- __doc__ = '\n The main window for the Size Distribution perspective.\n '¶
- __init__(self, /, parent: PySide6.QtWidgets.QWidget | None = None, f: PySide6.QtCore.Qt.WindowType = Default(Qt.WindowFlags), *, sizeGripEnabled: bool | None = None, modal: bool | None = None) None¶
Initialize self. See help(type(self)) for accurate signature.
- __module__ = 'sas.qtgui.Perspectives.SizeDistribution.SizeDistributionPerspective'¶
- allowBatch()¶
Can this perspective handle batch processing, default no
- allowSwap()¶
Tell the caller we don’t accept swapping data
- clearStatistics()¶
Clear the output box
- closeEvent(event)¶
Overwrite QDialog close method to allow for custom widget close
- communicator()¶
- data_plot_signal¶
- enableButtons()¶
Enable buttons when data is present, else disable them
- ext = 'ps'¶
- fitComplete(result: MaxEntResult) None¶
Receive and display fitting results “result” is a tuple of actual result list and the fit time in seconds
- fittingCompleted(result: MaxEntResult | None) None¶
Send the finish message from calculate threads to main thread
- fittingError(etype, value, traceback)¶
Handle error in the calculation thread
- fittingFinishedSignal¶
- getBackgroundParams()¶
Collect background parameters from the GUI state
- getFlatBackgroundRange()¶
Collect background range from the GUI state
- getMaxEntParams()¶
Collect Max Ent parameters from the GUI state
- getPage()¶
serializes full state of this fit page
- getPowerLawBackgroundRange()¶
Collect power law range from the GUI state
- getState()¶
Collects all active params into a dictionary of {name: value} :return: {name: value}
- getWeightType()¶
Return the weight type based on the checked radio button
- help()¶
Open the Size Distribution help
- isClosable()¶
Allow outsiders close this widget
- isSerializable()¶
Tell the caller that this perspective writes its state
- name = 'SizeDistribution'¶
- onFitFlatBackground()¶
Fit flat background and update plot
- onFitPowerLaw()¶
Fit background power law and update plot
- onFullFit()¶
Perform a full fit of the size distribution
- onLowQStateChanged(state: int)¶
Slot for state change of the subtract power law checkbox
- onQuickFit()¶
Perform a quick fit of the size distribution
- onRangeReset()¶
Callback for resetting qmin/qmax
- plotData()¶
Plot data, background and background subtracted data
- removeData(data_list=None)¶
Remove the existing data reference from the Size Distribution Perspective
- resetWindow()¶
Reset the state of input widgets and data structures
- serializeAll()¶
Serialize the size distribution state so data can be saved Size distribution is not batch-ready so this will only effect a single page :return: {data-id: {self.name: {inversion-state}}}
- serializeCurrentPage()¶
Serialize and return a dictionary of {data_id: sizedistr-state} Return empty dictionary if no data :return: {data-id: {self.name: {invariant - state}}}
- setClosable(value=True)¶
Allow outsiders close this widget
- setData(data_item=None, is_batch=False)¶
Obtain a QStandardItem object and parse it to get Data1D/2D Pass it over to the calculator
- setupMapper()¶
- setupModel()¶
Update boxes with initial values
- setupSlots()¶
Connect the use controls to their appropriate methods
- setupValidators()¶
Apply validators to editable line edits
- setupWindow()¶
Initialize base window state on init
- staticMetaObject = PySide6.QtCore.QMetaObject("SizeDistributionWindow" inherits "QDialog": Methods: #41 type=Signal, signature=fittingFinishedSignal(PyObject), parameters=PyObject #42 type=Signal, signature=data_plot_signal() )¶
- property title: str¶
Window title
- updateBackground()¶
Update the background data
- updateFromParameters(params)¶
Called by Open Project, Open Analysis, and removeData :param params: {param_name: value} -> Default values used if not valid :return: None
- updateQRange(q_range_min, q_range_max)¶
Update the local model based on calculated values
- updateStatistics(result)¶
Update the output box with statistics
sas.qtgui.Perspectives.SizeDistribution.SizeDistributionThread module¶
- class sas.qtgui.Perspectives.SizeDistribution.SizeDistributionThread.SizeDistributionThread(data: Data1D, background: Data1D, params: MaxEntParameters, completefn=None, updatefn=None, yieldtime=0.01, worktime=0.01, exception_handler=None)¶
Bases:
CalcThreadThread performing the fit
- __annotations__ = {}¶
- __doc__ = 'Thread performing the fit'¶
- __init__(data: Data1D, background: Data1D, params: MaxEntParameters, completefn=None, updatefn=None, yieldtime=0.01, worktime=0.01, exception_handler=None)¶
Initialize parameters
- __module__ = 'sas.qtgui.Perspectives.SizeDistribution.SizeDistributionThread'¶
- compute(*args, **kwargs)¶
Perform a work unit. The subclass will provide details of the arguments.
sas.qtgui.Perspectives.SizeDistribution.SizeDistributionUtils module¶
- class sas.qtgui.Perspectives.SizeDistribution.SizeDistributionUtils.MaxEntParameters(qmin: float = 0.0, qmax: float = 0.1, dmin: float = 10.0, dmax: float = 1000.0, num_bins: int = 100, log_binning: bool = True, model: str = 'ellipsoid', aspect_ratio: float = 1.0, contrast: float = 1.0, sky_background: float = 1e-06, max_iterations: int = 100, use_weights: bool = True, weight_type: sas.qtgui.Perspectives.SizeDistribution.SizeDistributionUtils.WeightType = <WeightType.DI: 'dI'>, weight_factor: float = 1.0, weight_percent: float = 1.0, full_fit: bool = True)¶
Bases:
object- __annotations__ = {'aspect_ratio': <class 'float'>, 'contrast': <class 'float'>, 'dmax': <class 'float'>, 'dmin': <class 'float'>, 'full_fit': <class 'bool'>, 'log_binning': <class 'bool'>, 'max_iterations': <class 'int'>, 'model': <class 'str'>, 'num_bins': <class 'int'>, 'qmax': <class 'float'>, 'qmin': <class 'float'>, 'sky_background': <class 'float'>, 'use_weights': <class 'bool'>, 'weight_factor': <class 'float'>, 'weight_percent': <class 'float'>, 'weight_type': <enum 'WeightType'>}¶
- __dataclass_fields__ = {'aspect_ratio': Field(name='aspect_ratio',type=<class 'float'>,default=1.0,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'contrast': Field(name='contrast',type=<class 'float'>,default=1.0,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'dmax': Field(name='dmax',type=<class 'float'>,default=1000.0,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'dmin': Field(name='dmin',type=<class 'float'>,default=10.0,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'full_fit': Field(name='full_fit',type=<class 'bool'>,default=True,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'log_binning': Field(name='log_binning',type=<class 'bool'>,default=True,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'max_iterations': Field(name='max_iterations',type=<class 'int'>,default=100,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'model': Field(name='model',type=<class 'str'>,default='ellipsoid',default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'num_bins': Field(name='num_bins',type=<class 'int'>,default=100,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'qmax': Field(name='qmax',type=<class 'float'>,default=0.1,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'qmin': Field(name='qmin',type=<class 'float'>,default=0.0,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'sky_background': Field(name='sky_background',type=<class 'float'>,default=1e-06,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'use_weights': Field(name='use_weights',type=<class 'bool'>,default=True,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'weight_factor': Field(name='weight_factor',type=<class 'float'>,default=1.0,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'weight_percent': Field(name='weight_percent',type=<class 'float'>,default=1.0,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'weight_type': Field(name='weight_type',type=<enum 'WeightType'>,default=<WeightType.DI: 'dI'>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD)}¶
- __dataclass_params__ = _DataclassParams(init=True,repr=True,eq=True,order=False,unsafe_hash=False,frozen=False)¶
- __dict__ = mappingproxy({'__module__': 'sas.qtgui.Perspectives.SizeDistribution.SizeDistributionUtils', '__annotations__': {'qmin': <class 'float'>, 'qmax': <class 'float'>, 'dmin': <class 'float'>, 'dmax': <class 'float'>, 'num_bins': <class 'int'>, 'log_binning': <class 'bool'>, 'model': <class 'str'>, 'aspect_ratio': <class 'float'>, 'contrast': <class 'float'>, 'sky_background': <class 'float'>, 'max_iterations': <class 'int'>, 'use_weights': <class 'bool'>, 'weight_type': <enum 'WeightType'>, 'weight_factor': <class 'float'>, 'weight_percent': <class 'float'>, 'full_fit': <class 'bool'>}, 'qmin': 0.0, 'qmax': 0.1, 'dmin': 10.0, 'dmax': 1000.0, 'num_bins': 100, 'log_binning': True, 'model': 'ellipsoid', 'aspect_ratio': 1.0, 'contrast': 1.0, 'sky_background': 1e-06, 'max_iterations': 100, 'use_weights': True, 'weight_type': <WeightType.DI: 'dI'>, 'weight_factor': 1.0, 'weight_percent': 1.0, 'full_fit': True, '__dict__': <attribute '__dict__' of 'MaxEntParameters' objects>, '__weakref__': <attribute '__weakref__' of 'MaxEntParameters' objects>, '__doc__': "MaxEntParameters(qmin: float = 0.0, qmax: float = 0.1, dmin: float = 10.0, dmax: float = 1000.0, num_bins: int = 100, log_binning: bool = True, model: str = 'ellipsoid', aspect_ratio: float = 1.0, contrast: float = 1.0, sky_background: float = 1e-06, max_iterations: int = 100, use_weights: bool = True, weight_type: sas.qtgui.Perspectives.SizeDistribution.SizeDistributionUtils.WeightType = <WeightType.DI: 'dI'>, weight_factor: float = 1.0, weight_percent: float = 1.0, full_fit: bool = True)", '__dataclass_params__': _DataclassParams(init=True,repr=True,eq=True,order=False,unsafe_hash=False,frozen=False), '__dataclass_fields__': {'qmin': Field(name='qmin',type=<class 'float'>,default=0.0,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'qmax': Field(name='qmax',type=<class 'float'>,default=0.1,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'dmin': Field(name='dmin',type=<class 'float'>,default=10.0,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'dmax': Field(name='dmax',type=<class 'float'>,default=1000.0,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'num_bins': Field(name='num_bins',type=<class 'int'>,default=100,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'log_binning': Field(name='log_binning',type=<class 'bool'>,default=True,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'model': Field(name='model',type=<class 'str'>,default='ellipsoid',default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'aspect_ratio': Field(name='aspect_ratio',type=<class 'float'>,default=1.0,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'contrast': Field(name='contrast',type=<class 'float'>,default=1.0,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'sky_background': Field(name='sky_background',type=<class 'float'>,default=1e-06,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'max_iterations': Field(name='max_iterations',type=<class 'int'>,default=100,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'use_weights': Field(name='use_weights',type=<class 'bool'>,default=True,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'weight_type': Field(name='weight_type',type=<enum 'WeightType'>,default=<WeightType.DI: 'dI'>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'weight_factor': Field(name='weight_factor',type=<class 'float'>,default=1.0,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'weight_percent': Field(name='weight_percent',type=<class 'float'>,default=1.0,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'full_fit': Field(name='full_fit',type=<class 'bool'>,default=True,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD)}, '__init__': <function MaxEntParameters.__init__>, '__repr__': <function MaxEntParameters.__repr__>, '__eq__': <function MaxEntParameters.__eq__>, '__hash__': None, '__match_args__': ('qmin', 'qmax', 'dmin', 'dmax', 'num_bins', 'log_binning', 'model', 'aspect_ratio', 'contrast', 'sky_background', 'max_iterations', 'use_weights', 'weight_type', 'weight_factor', 'weight_percent', 'full_fit')})¶
- __doc__ = "MaxEntParameters(qmin: float = 0.0, qmax: float = 0.1, dmin: float = 10.0, dmax: float = 1000.0, num_bins: int = 100, log_binning: bool = True, model: str = 'ellipsoid', aspect_ratio: float = 1.0, contrast: float = 1.0, sky_background: float = 1e-06, max_iterations: int = 100, use_weights: bool = True, weight_type: sas.qtgui.Perspectives.SizeDistribution.SizeDistributionUtils.WeightType = <WeightType.DI: 'dI'>, weight_factor: float = 1.0, weight_percent: float = 1.0, full_fit: bool = True)"¶
- __eq__(other)¶
Return self==value.
- __hash__ = None¶
- __init__(qmin: float = 0.0, qmax: float = 0.1, dmin: float = 10.0, dmax: float = 1000.0, num_bins: int = 100, log_binning: bool = True, model: str = 'ellipsoid', aspect_ratio: float = 1.0, contrast: float = 1.0, sky_background: float = 1e-06, max_iterations: int = 100, use_weights: bool = True, weight_type: WeightType = WeightType.DI, weight_factor: float = 1.0, weight_percent: float = 1.0, full_fit: bool = True) None¶
- __match_args__ = ('qmin', 'qmax', 'dmin', 'dmax', 'num_bins', 'log_binning', 'model', 'aspect_ratio', 'contrast', 'sky_background', 'max_iterations', 'use_weights', 'weight_type', 'weight_factor', 'weight_percent', 'full_fit')¶
- __module__ = 'sas.qtgui.Perspectives.SizeDistribution.SizeDistributionUtils'¶
- __repr__()¶
Return repr(self).
- __weakref__¶
list of weak references to the object
- aspect_ratio: float = 1.0¶
- contrast: float = 1.0¶
- dmax: float = 1000.0¶
- dmin: float = 10.0¶
- full_fit: bool = True¶
- log_binning: bool = True¶
- max_iterations: int = 100¶
- model: str = 'ellipsoid'¶
- num_bins: int = 100¶
- qmax: float = 0.1¶
- qmin: float = 0.0¶
- sky_background: float = 1e-06¶
- use_weights: bool = True¶
- weight_factor: float = 1.0¶
- weight_percent: float = 1.0¶
- weight_type: WeightType = 'dI'¶
- class sas.qtgui.Perspectives.SizeDistribution.SizeDistributionUtils.MaxEntResult(convergences: list[bool], num_iters: list[int], chisq: float, bins: list[float], bin_mag: list[float], bin_diff: list[float], bin_err: list[float], data_max_ent: sasdata.dataloader.data_info.Data1D, statistics: dict)¶
Bases:
object- __annotations__ = {'bin_diff': list[float], 'bin_err': list[float], 'bin_mag': list[float], 'bins': list[float], 'chisq': <class 'float'>, 'convergences': list[bool], 'data_max_ent': <class 'sasdata.dataloader.data_info.Data1D'>, 'num_iters': list[int], 'statistics': <class 'dict'>}¶
- __dataclass_fields__ = {'bin_diff': Field(name='bin_diff',type=list[float],default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'bin_err': Field(name='bin_err',type=list[float],default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'bin_mag': Field(name='bin_mag',type=list[float],default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'bins': Field(name='bins',type=list[float],default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'chisq': Field(name='chisq',type=<class 'float'>,default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'convergences': Field(name='convergences',type=list[bool],default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'data_max_ent': Field(name='data_max_ent',type=<class 'sasdata.dataloader.data_info.Data1D'>,default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'num_iters': Field(name='num_iters',type=list[int],default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'statistics': Field(name='statistics',type=<class 'dict'>,default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD)}¶
- __dataclass_params__ = _DataclassParams(init=True,repr=True,eq=True,order=False,unsafe_hash=False,frozen=False)¶
- __dict__ = mappingproxy({'__module__': 'sas.qtgui.Perspectives.SizeDistribution.SizeDistributionUtils', '__annotations__': {'convergences': list[bool], 'num_iters': list[int], 'chisq': <class 'float'>, 'bins': list[float], 'bin_mag': list[float], 'bin_diff': list[float], 'bin_err': list[float], 'data_max_ent': <class 'sasdata.dataloader.data_info.Data1D'>, 'statistics': <class 'dict'>}, '__dict__': <attribute '__dict__' of 'MaxEntResult' objects>, '__weakref__': <attribute '__weakref__' of 'MaxEntResult' objects>, '__doc__': 'MaxEntResult(convergences: list[bool], num_iters: list[int], chisq: float, bins: list[float], bin_mag: list[float], bin_diff: list[float], bin_err: list[float], data_max_ent: sasdata.dataloader.data_info.Data1D, statistics: dict)', '__dataclass_params__': _DataclassParams(init=True,repr=True,eq=True,order=False,unsafe_hash=False,frozen=False), '__dataclass_fields__': {'convergences': Field(name='convergences',type=list[bool],default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'num_iters': Field(name='num_iters',type=list[int],default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'chisq': Field(name='chisq',type=<class 'float'>,default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'bins': Field(name='bins',type=list[float],default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'bin_mag': Field(name='bin_mag',type=list[float],default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'bin_diff': Field(name='bin_diff',type=list[float],default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'bin_err': Field(name='bin_err',type=list[float],default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'data_max_ent': Field(name='data_max_ent',type=<class 'sasdata.dataloader.data_info.Data1D'>,default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD), 'statistics': Field(name='statistics',type=<class 'dict'>,default=<dataclasses._MISSING_TYPE object>,default_factory=<dataclasses._MISSING_TYPE object>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=False,_field_type=_FIELD)}, '__init__': <function MaxEntResult.__init__>, '__repr__': <function MaxEntResult.__repr__>, '__eq__': <function MaxEntResult.__eq__>, '__hash__': None, '__match_args__': ('convergences', 'num_iters', 'chisq', 'bins', 'bin_mag', 'bin_diff', 'bin_err', 'data_max_ent', 'statistics')})¶
- __doc__ = 'MaxEntResult(convergences: list[bool], num_iters: list[int], chisq: float, bins: list[float], bin_mag: list[float], bin_diff: list[float], bin_err: list[float], data_max_ent: sasdata.dataloader.data_info.Data1D, statistics: dict)'¶
- __eq__(other)¶
Return self==value.
- __hash__ = None¶
- __init__(convergences: list[bool], num_iters: list[int], chisq: float, bins: list[float], bin_mag: list[float], bin_diff: list[float], bin_err: list[float], data_max_ent: Data1D, statistics: dict) None¶
- __match_args__ = ('convergences', 'num_iters', 'chisq', 'bins', 'bin_mag', 'bin_diff', 'bin_err', 'data_max_ent', 'statistics')¶
- __module__ = 'sas.qtgui.Perspectives.SizeDistribution.SizeDistributionUtils'¶
- __repr__()¶
Return repr(self).
- __weakref__¶
list of weak references to the object
- bin_diff: list[float]¶
- bin_err: list[float]¶
- bin_mag: list[float]¶
- bins: list[float]¶
- chisq: float¶
- convergences: list[bool]¶
- num_iters: list[int]¶
- statistics: dict¶
- class sas.qtgui.Perspectives.SizeDistribution.SizeDistributionUtils.WeightType(value)¶
Bases:
StrEnum- DI = 'dI'¶
- NONE = 'None'¶
- PERCENT_I = 'percentI'¶
- SQRT_I = 'sqrt(I Data)'¶
- __doc__ = None¶
- __format__(format_spec, /)¶
Return a formatted version of the string as described by format_spec.
- __module__ = 'sas.qtgui.Perspectives.SizeDistribution.SizeDistributionUtils'¶
- __new__(value)¶
- __str__()¶
Return str(self).
- _generate_next_value_(start, count, last_values)¶
Return the lower-cased version of the member name.