sas.sascalc.pr package¶
Submodules¶
sas.sascalc.pr.calc module¶
Converted invertor.c’s methods. Implements low level inversion functionality, with conditional Numba njit compilation.
- sas.sascalc.pr.calc.dprdr(pars, d_max, r)¶
dP(r)/dr calculated from the expansion.
- Parameters:
pars – c-parameters.
d_max – d_max.
r – r-value.
- Returns:
dP(r)/dr.
- sas.sascalc.pr.calc.dprdr_calc(i, d_max, r)¶
- sas.sascalc.pr.calc.int_pr(pars, d_max, nslice)¶
Integral of P(r).
- Parameters:
pars – c-parameters.
d_max – d_max.
nslice – nslice.
- Returns:
Integral of P(r).
- sas.sascalc.pr.calc.int_pr_square(pars, d_max, nslice)¶
Regularization term calculated from the expansion.
- Parameters:
pars – c-parameters.
d_max – d_max.
nslice – nslice.
- Returns:
Regularization term calculated from the expansion.
- sas.sascalc.pr.calc.iq(pars, d_max, q)¶
Scattering intensity calculated from the expansion.
- Parameters:
pars – c-parameters.
d_max – d_max.
q – q (vector).
- Returns:
Scattering intensity from the expansion across all q.
- sas.sascalc.pr.calc.iq_smeared(p, q, d_max, height, width, npts)¶
Scattering intensity calculated from the expansion, slit-smeared.
- Parameters:
p – c-parameters.
q – q (vector).
height – slit_height.
width – slit_width.
npts – npts.
- Returns:
Scattering intensity from the expansion slit-smeared across all q.
- sas.sascalc.pr.calc.npeaks(pars, d_max, nslice)¶
Get the number of P(r) peaks.
- Parameters:
pars – c-parameters.
d_max – d_max.
nslice – nslice.
- Returns:
Number of P(r) peaks.
- sas.sascalc.pr.calc.ortho(d_max, n, r)¶
Orthogonal Functions: B(r) = 2r sin(pi*nr/d)
- Parameters:
d_max – d_max.
n –
- Returns:
B(r).
- sas.sascalc.pr.calc.ortho_derived(d_max, n, r)¶
First derivative in of the orthogonal function dB(r)/dr.
- Parameters:
d_max – d_max.
n –
- Returns:
First derivative in dB(r)/dr.
- sas.sascalc.pr.calc.ortho_transformed(q, d_max, n)¶
Fourier transform of the nth orthogonal function.
- Parameters:
q – q (vector).
d_max – d_max.
n –
- Returns:
Fourier transform of nth orthogonal function across all q.
- sas.sascalc.pr.calc.ortho_transformed_smeared(q, d_max, n, height, width, npts)¶
Slit-smeared Fourier transform of the nth orthogonal function. Smearing follows Lake, Acta Cryst. (1967) 23, 191.
- Parameters:
q – q (vector).
d_max – d_max.
n –
height – slit_height.
width – slit_width.
npts – npts.
- Returns:
Slit-smeared Fourier transform of nth orthogonal function across all q.
- sas.sascalc.pr.calc.positive_errors(pars, err, d_max, nslice)¶
Get the fraction of the integral of P(r) over the whole range of r that is at least one sigma above 0.
- Parameters:
pars – c-parameters.
err – error terms.
d_max – d_max.
nslice – nslice.
- Returns:
The fraction of the integral of P(r) over the whole range of r that is at least one sigma above 0.
- sas.sascalc.pr.calc.positive_integral(pars, d_max, nslice)¶
Get the fraction of the integral of P(r) over the whole range of r that is above 0. A valid P(r) is defined as being positive for all r.
- Parameters:
pars – c-parameters.
d_max – d_max.
nslice – nslice.
- Returns:
The fraction of the integral of P(r) over the whole range of r that is above 0.
- sas.sascalc.pr.calc.pr(pars, d_max, r)¶
P(r) calculated from the expansion
- Parameters:
pars – c-parameters.
d_max – d_max.
r – r-value to evaluate P(r).
- Returns:
P(r).
- sas.sascalc.pr.calc.pr_err(pars, err, d_max, r)¶
P(r) calculated from the expansion, with errors.
- Parameters:
pars – c-parameters.
err – err.
r – r-value.
- Returns:
[P(r), dP(r)].
- sas.sascalc.pr.calc.reg_term(pars, d_max, nslice)¶
Regularization term calculated from the expansion.
- Parameters:
pars – c-parameters.
d_max – d_max.
nslice – nslice.
- Returns:
Regularization term calculated from the expansion.
- sas.sascalc.pr.calc.rg(pars, d_max, nslice)¶
R_g radius of gyration calculation
R_g**2 = integral[r**2 * p(r) dr] / (2.0 * integral[p(r) dr])
- Parameters:
pars – c-parameters.
d_max – d_max.
nslice – nslice.
- Returns:
R_g radius of gyration.
sas.sascalc.pr.distance_explorer module¶
Module to explore the P(r) inversion results for a range of D_max value. User picks a number of points and a range of distances, then get a series of outputs as a function of D_max over that range.
- class sas.sascalc.pr.distance_explorer.DistExplorer(pr_state)¶
Bases:
objectThe explorer class
- __call__(dmin=None, dmax=None, npts=10)¶
Compute the outputs as a function of D_max.
- Parameters:
dmin – minimum value for D_max
dmax – maximum value for D_max
npts – number of points for D_max
- __dict__ = mappingproxy({'__module__': 'sas.sascalc.pr.distance_explorer', '__doc__': '\n The explorer class\n ', '__init__': <function DistExplorer.__init__>, '__call__': <function DistExplorer.__call__>, '__dict__': <attribute '__dict__' of 'DistExplorer' objects>, '__weakref__': <attribute '__weakref__' of 'DistExplorer' objects>, '__annotations__': {}})¶
- __doc__ = '\n The explorer class\n '¶
- __init__(pr_state)¶
Initialization.
- Parameters:
pr_state – sas.sascalc.pr.invertor.Invertor object
- __module__ = 'sas.sascalc.pr.distance_explorer'¶
- __weakref__¶
list of weak references to the object
- class sas.sascalc.pr.distance_explorer.Results¶
Bases:
objectClass to hold the inversion output parameters as a function of D_max
- __dict__ = mappingproxy({'__module__': 'sas.sascalc.pr.distance_explorer', '__doc__': '\n Class to hold the inversion output parameters\n as a function of D_max\n ', '__init__': <function Results.__init__>, '__dict__': <attribute '__dict__' of 'Results' objects>, '__weakref__': <attribute '__weakref__' of 'Results' objects>, '__annotations__': {}})¶
- __doc__ = '\n Class to hold the inversion output parameters\n as a function of D_max\n '¶
- __init__()¶
Initialization. Create empty arrays and dictionary of labels.
- __module__ = 'sas.sascalc.pr.distance_explorer'¶
- __weakref__¶
list of weak references to the object
sas.sascalc.pr.invertor module¶
- class sas.sascalc.pr.invertor.Invertor(logic: InversionLogic)¶
Bases:
object- __dict__ = mappingproxy({'__module__': 'sas.sascalc.pr.invertor', '__init__': <function Invertor.__init__>, 'init_default_values': <function Invertor.init_default_values>, 'x': <property object>, 'y': <property object>, 'err': <property object>, 'npoints': <property object>, 'ny': <property object>, 'nerr': <property object>, 'is_valid': <function Invertor.is_valid>, 'clone': <function Invertor.clone>, 'lstsq': <function Invertor.lstsq>, 'invert': <function Invertor.invert>, 'iq': <function Invertor.iq>, 'get_iq_smeared': <function Invertor.get_iq_smeared>, 'pr': <function Invertor.pr>, 'get_pr_err': <function Invertor.get_pr_err>, 'pr_err': <function Invertor.pr_err>, 'basefunc_ft': <function Invertor.basefunc_ft>, 'oscillations': <function Invertor.oscillations>, 'get_peaks': <function Invertor.get_peaks>, 'get_positive': <function Invertor.get_positive>, 'get_pos_err': <function Invertor.get_pos_err>, 'rg': <function Invertor.rg>, 'iq0': <function Invertor.iq0>, 'accept_q': <function Invertor.accept_q>, 'check_for_zero': <function Invertor.check_for_zero>, 'estimate_numterms': <function Invertor.estimate_numterms>, 'estimate_alpha': <function Invertor.estimate_alpha>, '_get_matrix': <function Invertor._get_matrix>, '_get_invcov_matrix': <function Invertor._get_invcov_matrix>, '_get_reg_size': <function Invertor._get_reg_size>, '__dict__': <attribute '__dict__' of 'Invertor' objects>, '__weakref__': <attribute '__weakref__' of 'Invertor' objects>, '__doc__': None, '__annotations__': {}})¶
- __doc__ = None¶
- __init__(logic: InversionLogic)¶
- __module__ = 'sas.sascalc.pr.invertor'¶
- __weakref__¶
list of weak references to the object
- _get_invcov_matrix(nfunc, nr, a_obj)¶
Compute the inverse covariance matrix, defined as inv_cov = a_transposed x a.
- Parameters:
nfunc – number of base functions.
nr – number of r-points used when evaluating reg term.
a – A array to fill.
inv_cov – inverse covariance array to be filled.
- Returns:
0
- _get_matrix(nfunc, nr)¶
Returns A matrix and b vector for least square problem.
- Parameters:
nfunc – number of base functions.
nr – number of r-points used when evaluating reg term.
a – A array to fill.
b – b vector to fill.
- Returns:
0
- _get_reg_size(nfunc, nr, a_obj)¶
Computes sum_sig and sum_reg of input array given.
- Parameters:
nfunc – number of base functions.
nr – number of r-points used when evaluating reg term.
a_obj – Array to compute sum_sig and sum_reg of.
- Returns:
Tuple of (sum_sig, sum_reg)
- accept_q(q)¶
Check whether a q-value is within acceptable limits.
- Returns:
1 if accepted, 0 if rejected.
- basefunc_ft(d_max, n, q)¶
Returns the value of the nth Fourier transformed base function.
- Parameters:
d_max – d_max.
n –
q – q, scalar or vector.
- Returns:
nth Fourier transformed base function, evaluated at q.
- check_for_zero(x)¶
- property err: ndarray[tuple[int, ...], dtype[float64]]¶
- estimate_alpha(nfunc)¶
Returns a reasonable guess for the regularization constant alpha
- Parameters:
nfunc – number of terms to use in the expansion.
- Returns:
alpha, message, elapsed
where alpha is the estimate for alpha, message is a message for the user, elapsed is the computation time
- estimate_numterms(isquit_func=None)¶
Returns a reasonable guess for the number of terms
- Parameters:
isquit_func – reference to thread function to call to check whether the computation needs to be stopped.
- Returns:
number of terms, alpha, message
- get_iq_smeared(pars, q)¶
Function to call to evaluate the scattering intensity. The scattering intensity is slit-smeared.
- Parameters:
pars – c-parameters
q – q, scalar or vector.
- Returns:
I(q), either scalar or vector depending on q.
- get_peaks(pars)¶
Returns the number of peaks in the output P(r) distribution for the given set of coefficients.
- Parameters:
pars – c-parameters.
- Returns:
number of P(r) peaks.
- get_pos_err(pars, pars_err)¶
Returns the fraction of P(r) that is 1 standard deviation above zero over the full range of r for the given set of coefficients.
- Parameters:
pars – c-parameters.
pars_err – pars_err.
- Returns:
fraction of P(r) that is positive.
- get_positive(pars)¶
Returns the fraction of P(r) that is positive over the full range of r for the given set of coefficients.
- Parameters:
pars – c-parameters.
- Returns:
fraction of P(r) that is positive.
- get_pr_err(pars, pars_err, r)¶
Function to call to evaluate P(r) with errors.
- Parameters:
pars – c-parameters.
pars_err – pars_err.
r – r-value.
- Returns:
(P(r), dP(r))
- init_default_values()¶
- invert(nfunc=10, nr=20)¶
Perform inversion to P(r)
The problem is solved by posing the problem as Ax = b, where x is the set of coefficients we are looking for.
Npts is the number of points.
In the following i refers to the ith base function coefficient. The matrix has its entries j in its first Npts rows set to
A[i][j] = (Fourier transformed base function for point j)
We then choose a number of r-points, n_r, to evaluate the second derivative of P(r) at. This is used as our regularization term. For a vector r of length n_r, the following n_r rows are set to
A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2, evaluated at r[j])
The vector b has its first Npts entries set to
b[j] = (I(q) observed for point j)
The following n_r entries are set to zero.
The result is found by using scipy.linalg.basic.lstsq to invert the matrix and find the coefficients x.
- Parameters:
nfunc – number of base functions to use.
nr – number of r points to evaluate the 2nd derivative at for the reg. term.
- Returns:
c_out, c_cov - the coefficients with covariance matrix
- iq(pars, q)¶
Function to call to evaluate the scattering intensity.
- Parameters:
pars – c-parameters
q – q, scalar or vector.
- Returns:
I(q)
- iq0(pars)¶
Returns the value of I(q=0).
- Parameters:
pars – c-parameters.
- Returns:
I(q=0)
- is_valid() bool¶
- lstsq(nfunc=5, nr=20)¶
The problem is solved by posing the problem as Ax = b, where x is the set of coefficients we are looking for.
Npts is the number of points.
In the following i refers to the ith base function coefficient. The matrix has its entries j in its first Npts rows set to
A[i][j] = (Fourier transformed base function for point j)
We then choose a number of r-points, n_r, to evaluate the second derivative of P(r) at. This is used as our regularization term. For a vector r of length n_r, the following n_r rows are set to
A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2, evaluated at r[j])
The vector b has its first Npts entries set to
b[j] = (I(q) observed for point j)
The following n_r entries are set to zero.
The result is found by using scipy.linalg.basic.lstsq to invert the matrix and find the coefficients x.
- Parameters:
nfunc – number of base functions to use.
nr – number of r points to evaluate the 2nd derivative at for the reg. term.
If the result does not allow us to compute the covariance matrix, a matrix filled with zeros will be returned.
- property nerr: int¶
- property npoints: int¶
- property ny: int¶
- oscillations(pars)¶
Returns the value of the oscillation figure of merit for the given set of coefficients. For a sphere, the oscillation figure of merit is 1.1.
- Parameters:
pars – c-parameters.
- Returns:
oscillation figure of merit.
- pr(pars, r)¶
Function to call to evaluate P(r).
- Parameters:
pars – c-parameters.
r – r-value to evaluate P(r) at.
- Returns:
P(r)
- pr_err(c, c_cov, r)¶
Returns the value of P(r) for a given r, and base function coefficients, with error.
- Parameters:
c – base function coefficients
c_cov – covariance matrice of the base function coefficients
r – r-value to evaluate P(r) at
- Returns:
P(r)
- rg(pars)¶
Returns the value of the radius of gyration Rg.
- Parameters:
pars – c-parameters.
- Returns:
Rg.
- property x: ndarray[tuple[int, ...], dtype[float64]]¶
- property y: ndarray[tuple[int, ...], dtype[float64]]¶
- sas.sascalc.pr.invertor.help()¶
Provide general online help text Future work: extend this function to allow topic selection
sas.sascalc.pr.num_term module¶
- class sas.sascalc.pr.num_term.NTermEstimator(invertor)¶
Bases:
object- __dict__ = mappingproxy({'__module__': 'sas.sascalc.pr.num_term', '__doc__': '\n ', '__init__': <function NTermEstimator.__init__>, 'is_odd': <function NTermEstimator.is_odd>, 'sort_osc': <function NTermEstimator.sort_osc>, 'median_osc': <function NTermEstimator.median_osc>, 'get0_out': <function NTermEstimator.get0_out>, 'ls_osc': <function NTermEstimator.ls_osc>, 'compare_err': <function NTermEstimator.compare_err>, 'num_terms': <function NTermEstimator.num_terms>, '__dict__': <attribute '__dict__' of 'NTermEstimator' objects>, '__weakref__': <attribute '__weakref__' of 'NTermEstimator' objects>, '__annotations__': {}})¶
- __doc__ = '\n '¶
- __init__(invertor)¶
- __module__ = 'sas.sascalc.pr.num_term'¶
- __weakref__¶
list of weak references to the object
- compare_err()¶
- get0_out()¶
- is_odd(n)¶
- ls_osc()¶
- median_osc()¶
- num_terms(isquit_func=None)¶
- sort_osc()¶
- sas.sascalc.pr.num_term.load(path)¶
Module contents¶
P(r) inversion for SAS