sas.perspectives.fitting.plugin_models package
Submodules
sas.perspectives.fitting.plugin_models.polynomial5 module
Test plug-in model These are links of available functions:
http://docs.python.org/library/math.html http://www.scipy.org/Numpy_Functions_by_Category
-
class
sas.perspectives.fitting.plugin_models.polynomial5.Model[source] Bases:
sas.models.pluginmodel.Model1DPlugin##YOU CAN BE MODIFY ANYTHING BETWEEN ##DESCRIPTION OF MODEL PLUG-IN GOES HERE
##EXAMPLE: Class that evaluates a polynomial model.
-
function(x=0.0)[source] Evaluate the model :param x: input x :return: function value
-
get_fname()[source] Get the model name same as the file name
-
name= ''
-
sas.perspectives.fitting.plugin_models.sph_bessel_jn module
Test plug-in model These are links of available functions:
http://docs.python.org/library/math.html http://www.scipy.org/Numpy_Functions_by_Category
-
class
sas.perspectives.fitting.plugin_models.sph_bessel_jn.Model[source] Bases:
sas.models.pluginmodel.Model1DPlugin##YOU CAN BE MODIFY ANYTHING BETWEEN ##DESCRIPTION OF MODEL PLUG-IN GOES HERE
##EXAMPLE: Class that evaluates a polynomial model.
-
function(x=0.0)[source] Evaluate the model
Parameters: x – input x Returns: function value
-
get_fname()[source] Get the model name same as the file name
-
name= ''
-
sas.perspectives.fitting.plugin_models.sum_Ap1_1_Ap2 module
-
class
sas.perspectives.fitting.plugin_models.sum_Ap1_1_Ap2.Model[source] Bases:
sas.models.pluginmodel.Model1DPluginUse for A*p1(Q)+(1-A)*p2(Q); Note: P(Q) refers to ‘form factor’ model.
-
evalDistribution(x=[])[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
fill_description(p_model1, p_model2)[source] Fill the description for P(Q)+P(Q)
-
function(x=0.0)[source]
-
getParam(name)[source] Set the value of a model parameter
Parameters: name – name of the parameter
-
getProfile()[source] Get SLD profile of p_model if exists
- : return: (r, beta) where r is a list of radius of the transition points
- beta is a list of the corresponding SLD values
- : Note: This works only for func_shell# = 2 (exp function)
- and is not supporting for p2
-
get_fname()[source] Get the model name same as the file name
-
name= ''
-
run(x=0.0)[source] Evaluate the model
Parameters: x – input q-value (float or [float, float] as [r, theta]) Returns: (scattering function value)
-
runXY(x=0.0)[source] Evaluate the model
Parameters: x – input q-value (float or [float, float] as [qx, qy]) Returns: scattering function value
-
setParam(name, value)[source] Set the value of a model parameter
Parameters: - name – name of the parameter
- value – value of the parameter
-
set_dispersion(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: parameter – name of the parameter [string] Dispersion: dispersion object of type DispersionModel
-
sas.perspectives.fitting.plugin_models.sum_p1_p2 module
-
class
sas.perspectives.fitting.plugin_models.sum_p1_p2.Model[source] Bases:
sas.models.pluginmodel.Model1DPluginUse for p1(Q)+p2(Q); Note: P(Q) refers to ‘form factor’ model.
-
evalDistribution(x=[])[source] Evaluate the model in cartesian coordinates
Parameters: x – input q[], or [qx[], qy[]] Returns: scattering function P(q[])
-
fill_description(p_model1, p_model2)[source] Fill the description for P(Q)+P(Q)
-
function(x=0.0)[source]
-
getParam(name)[source] Set the value of a model parameter
Parameters: name – name of the parameter
-
getProfile()[source] Get SLD profile of p_model if exists
- : return: (r, beta) where r is a list of radius of the transition points
- beta is a list of the corresponding SLD values
- : Note: This works only for func_shell# = 2 (exp function)
- and is not supporting for p2
-
get_fname()[source] Get the model name same as the file name
-
name= ''
-
run(x=0.0)[source] Evaluate the model
Parameters: x – input q-value (float or [float, float] as [r, theta]) Returns: (scattering function value)
-
runXY(x=0.0)[source] Evaluate the model
Parameters: x – input q-value (float or [float, float] as [qx, qy]) Returns: scattering function value
-
setParam(name, value)[source] Set the value of a model parameter
Parameters: - name – name of the parameter
- value – value of the parameter
-
set_dispersion(parameter, dispersion)[source] Set the dispersion object for a model parameter
Parameters: parameter – name of the parameter [string] Dispersion: dispersion object of type DispersionModel
-
sas.perspectives.fitting.plugin_models.testmodel module
Test plug-in model These are links of available functions:
http://docs.python.org/library/math.html http://www.scipy.org/Numpy_Functions_by_Category
-
class
sas.perspectives.fitting.plugin_models.testmodel.Model[source] Bases:
sas.models.pluginmodel.Model1DPlugin##YOU CAN BE MODIFY ANYTHING BETWEEN ##DESCRIPTION OF MODEL PLUG-IN GOES HERE
##EXAMPLE:Class that evaluates a cos(x) model.
-
function(x=0.0)[source] Evaluate the model
Parameters: x – input x Returns: function value
-
get_fname()[source] Get the model name same as the file name
-
name= ''
-
sas.perspectives.fitting.plugin_models.testmodel_2 module
Test plug-in model These are links of available functions:
http://docs.python.org/library/math.html http://www.scipy.org/Numpy_Functions_by_Category
-
class
sas.perspectives.fitting.plugin_models.testmodel_2.Model[source] Bases:
sas.models.pluginmodel.Model1DPlugin##YOU CAN BE MODIFY ANYTHING BETWEEN ##DESCRIPTION OF MODEL PLUG-IN GOES HERE
##EXAMPLE: Class that evaluates a polynomial model.
-
function(x=0.0)[source] Evaluate the model
Parameters: x – input x Returns: function value
-
get_fname()[source] Get the model name same as the file name
-
name= ''
-