.. _core-shell-cylinder: core_shell_cylinder ======================================================= Right circular cylinder with a core-shell scattering length density profile. =========== ======================================== ============ ============= Parameter Description Units Default value =========== ======================================== ============ ============= scale Source intensity None 1 background Source background |cm^-1| 0.001 sld_core Cylinder core scattering length density |1e-6Ang^-2| 4 sld_shell Cylinder shell scattering length density |1e-6Ang^-2| 4 sld_solvent Solvent scattering length density |1e-6Ang^-2| 1 radius Cylinder core radius |Ang| 20 thickness Cylinder shell thickness |Ang| 20 length Cylinder length |Ang| 400 theta In plane angle degree 60 phi Out of plane angle degree 60 =========== ======================================== ============ ============= The returned value is scaled to units of |cm^-1| |sr^-1|, absolute scale. **Definition** The output of the 2D scattering intensity function for oriented core-shell cylinders is given by (Kline, 2006 [#kline]_). The form factor is normalized by the particle volume. .. math:: I(q,\alpha) = \frac{\text{scale}}{V_s} F^2(q,\alpha).sin(\alpha) + \text{background} where .. math:: F(q,\alpha) = &\ (\rho_c - \rho_s) V_c \frac{\sin \left( q \tfrac12 L\cos\alpha \right)} {q \tfrac12 L\cos\alpha} \frac{2 J_1 \left( qR\sin\alpha \right)} {qR\sin\alpha} \\ &\ + (\rho_s - \rho_\text{solv}) V_s \frac{\sin \left( q \left(\tfrac12 L+T\right) \cos\alpha \right)} {q \left(\tfrac12 L +T \right) \cos\alpha} \frac{ 2 J_1 \left( q(R+T)\sin\alpha \right)} {q(R+T)\sin\alpha} and .. math:: V_s = \pi (R + T)^2 (L + 2T) and $\alpha$ is the angle between the axis of the cylinder and $\vec q$, $V_s$ is the volume of the outer shell (i.e. the total volume, including the shell), $V_c$ is the volume of the core, $L$ is the length of the core, $R$ is the radius of the core, $T$ is the thickness of the shell, $\rho_c$ is the scattering length density of the core, $\rho_s$ is the scattering length density of the shell, $\rho_\text{solv}$ is the scattering length density of the solvent, and *background* is the background level. The outer radius of the shell is given by $R+T$ and the total length of the outer shell is given by $L+2T$. $J1$ is the first order Bessel function. .. _core-shell-cylinder-geometry: .. figure:: img/core_shell_cylinder_geometry.jpg Core shell cylinder schematic. To provide easy access to the orientation of the core-shell cylinder, we define the axis of the cylinder using two angles $\theta$ and $\phi$. (see :ref:`cylinder model `) NB: The 2nd virial coefficient of the cylinder is calculated based on the radius and 2 length values, and used as the effective radius for $S(q)$ when $P(q) \cdot S(q)$ is applied. The $\theta$ and $\phi$ parameters are not used for the 1D output. .. figure:: img/core_shell_cylinder_autogenfig.png 1D and 2D plots corresponding to the default parameters of the model. **Reference** .. [#] see, for example, Ian Livsey J. Chem. Soc., Faraday Trans. 2, 1987,83, 1445-1452 .. [#kline] S R Kline, *J Appl. Cryst.*, 39 (2006) 895 **Authorship and Verification** * **Author:** NIST IGOR/DANSE **Date:** pre 2010 * **Last Modified by:** Paul Kienzle **Date:** Aug 8, 2016 * **Last Reviewed by:** Richard Heenan **Date:** March 18, 2016