.. _hollow-rectangular-prism-thin-walls: hollow_rectangular_prism_thin_walls ======================================================= Hollow rectangular parallelepiped with thin walls. =========== ======================================== ============ ============= Parameter Description Units Default value =========== ======================================== ============ ============= scale Source intensity None 1 background Source background |cm^-1| 0.001 sld Parallelepiped scattering length density |1e-6Ang^-2| 6.3 sld_solvent Solvent scattering length density |1e-6Ang^-2| 1 length_a Shorter side of the parallelepiped |Ang| 35 b2a_ratio Ratio sides b/a |Ang| 1 c2a_ratio Ratio sides c/a |Ang| 1 =========== ======================================== ============ ============= The returned value is scaled to units of |cm^-1| |sr^-1|, absolute scale. This model provides the form factor, $P(q)$, for a hollow rectangular prism with infinitely thin walls. It computes only the 1D scattering, not the 2D. **Definition** The 1D scattering intensity for this model is calculated according to the equations given by Nayuk and Huber (Nayuk, 2012). Assuming a hollow parallelepiped with infinitely thin walls, edge lengths $A \le B \le C$ and presenting an orientation with respect to the scattering vector given by $\theta$ and $\phi$, where $\theta$ is the angle between the $z$ axis and the longest axis of the parallelepiped $C$, and $\phi$ is the angle between the scattering vector (lying in the $xy$ plane) and the $y$ axis, the form factor is given by .. math:: P(q) = \frac{1}{V^2} \frac{2}{\pi} \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} [A_L(q)+A_T(q)]^2 \sin\theta\,d\theta\,d\phi where .. math:: V &= 2AB + 2AC + 2BC \\ A_L(q) &= 8 \times \frac{ \sin \left( \tfrac{1}{2} q A \sin\phi \sin\theta \right) \sin \left( \tfrac{1}{2} q B \cos\phi \sin\theta \right) \cos \left( \tfrac{1}{2} q C \cos\theta \right) }{q^2 \, \sin^2\theta \, \sin\phi \cos\phi} \\ A_T(q) &= A_F(q) \times \frac{2\,\sin \left( \tfrac{1}{2} q C \cos\theta \right)}{q\,\cos\theta} and .. math:: A_F(q) = 4 \frac{ \cos \left( \tfrac{1}{2} q A \sin\phi \sin\theta \right) \sin \left( \tfrac{1}{2} q B \cos\phi \sin\theta \right) } {q \, \cos\phi \, \sin\theta} + 4 \frac{ \sin \left( \tfrac{1}{2} q A \sin\phi \sin\theta \right) \cos \left( \tfrac{1}{2} q B \cos\phi \sin\theta \right) } {q \, \sin\phi \, \sin\theta} The 1D scattering intensity is then calculated as .. math:: I(q) = \text{scale} \times V \times (\rho_\text{p} - \rho_\text{solvent})^2 \times P(q) where $V$ is the volume of the rectangular prism, $\rho_\text{p}$ is the scattering length of the parallelepiped, $\rho_\text{solvent}$ is the scattering length of the solvent, and (if the data are in absolute units) *scale* represents the volume fraction (which is unitless). **The 2D scattering intensity is not computed by this model.** **Validation** Validation of the code was conducted by qualitatively comparing the output of the 1D model to the curves shown in (Nayuk, 2012). .. figure:: img/hollow_rectangular_prism_thin_walls_autogenfig.png 1D plot corresponding to the default parameters of the model. **References** R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854