
SasView Tutorials

Creating Custom Fitting Models
in SasView Version 5.x

www.sasview.org

1/32

3

q

Preamble

SasView was originally developed by the University of Tennessee as part of the Distributed
Data Analysis of Neutron Scattering Experiments (DANSE) project funded by the US
National Science Foundation (NSF), but is currently being developed as an Open Source
project hosted on GitHub and managed by a consortium of scattering facilities.
Participating facilities include (in alphabetical order): the Australian National Science &
Technology Centre for Neutron Scattering, the Diamond Light Source, the European
Spallation Source, the Federal Institute for Materials Research and Testing, the Institut
Laue Langevin, the ISIS Pulsed Neutron & Muon Source, the National Institute of
Standards & Technology Center for Neutron Research, the Oak Ridge National Laboratory
Neutron Sciences Directorate, and the Technical University Delft Reactor Institute.

SasView is distributed under a 'Three-clause' BSD licence which you may read here:
https://github.com/SasView/sasview/blob/master/LICENSE.TXT

SasView is free to download and use, including for commercial purposes.

© 2009-2023 UMD, UTK, NIST, ORNL, ISIS, ESS, ANSTO, ILL, TUD, DLS, BAM

If you make use of SasView

If you use SasView to do productive scientific research that leads to a publication, we ask
that you acknowledge use of the program with the following text:

This work benefited from the use of the SasView application, originally
developed under NSF Award DMR-0520547. SasView also contains code
developed with funding from the EU Horizon 2020 programme under the
SINE2020 project Grant No 654000.

Contributors to this Tutorial

Steve King (stephen.king@stfc.ac.uk)

Paul Butler (butlerpd@udel.edu)
Wojciech Potrzebowski (Wojciech.Potrzebowski@ess.eu)
Annika Stellhorn (annika.stellhorn@ess.eu)

Revisions

Last revised: 22 September 2023

2/32

Learning Objective

This tutorial will demonstrate the various ways it is possible to extend the base library of
Fitting Models (ie, Form Factors) shipped with SasView or those available for download as
Plugin Models from the Model Marketplace (http://marketplace.sasview.org/).

The examples in this tutorial are presented in order of increasing sophistication and the
degree of programming competency (mainly in the Python language) that is required to
implement them. Indeed, Example 1 does not require any programming knowledge at all!

Whilst each of the examples have been written to stand alone, readers are strongly
encouraged to work their way through the complete set.

The program interface shown in this tutorial is SasView Version 5.0.5 running on a
Windows platform but, apart from a few small differences in look and functionality, this
tutorial is generally applicable to SasView 5.x running on any platform.

Contents
Page

Running SasView 4

Example 1 – Combining Two Library Models 5

Example 2 – Combining More Than Two Models 8

Example 3 – Creating A Simple Model With The Model Editor 11

Example 4 – Repurposing An Existing Model 17

Example 5 – Reparameterising An Existing Model 23

Example 6 – Getting Creative 27

3/32

Running SasView

Windows
Either select SasView from the ‘Start Menu’ icon (or ‘Start’ > ‘All Programs’
if using Windows 7) or, if you asked the installer to create one, double-click
on the SasView desktop icon.

Mac OS
Go in to your ‘Applications’ folder and select SasView.

The SasView main window will open.

Tip: If you are not yet familiar with SasView, now would be a good time to read the tutorial
‘Getting Started with SasView’!

4/32

Example 1 – Combining Two Library Models

This is a common use case. Whilst the SasView FitPage allows you to combine a Model
(ie, Form Factor) with a Structure Factor, it does not allow you to combine two Models.
Instances where this might be necessary include where the scattering of interest is
superimposed on a power law background (as often happens when studying porous
systems) or where the scattering of interest arises from objects of different shape (eg,
spherical and ellipsoidal micelles) or, perhaps, where the system is bimodal. In all of
these examples, fitting a single Model is unlikely to suffice. This is where the
Add/Multiply Editor may be of use.

Go to the Menu Bar and select Fitting > Add/Multiply Models. This brings up the Easy
Add/Multiply Editor. This editor will create a custom Plugin Model for SasView to use.

Provide a unique name for the Plugin Model about to be created. This name must not
contain any spaces (use underscores to separate words if necessary).

5/32

If the name of the Plugin Model is not unique, for example, because it is the name of a
library Model shipped with SasView, or that of an existing Plugin Model, you will be warned
as shown above. In this situation you either need to provide a different name or check the
box to allow the existing Model to be overwritten. It is unwise to overwrite library models or
create models with the same names as library models!

Now add a short description of the Plugin Model.

Then select the two Models to be combined and, in between those drop-down boxes, also
select the manner in which the Models are to be combined. There are two options:

+ used to linearly combine the two models;

plugin_model = scale_factor * (P(Q)_1 + P(Q)_2) + background

@ used to multiply a form factor by a structure factor;
plugin_model = scale_factor * (P(Q) @ S(Q)) + background

Tip: There is also the option to use the normal multiply operator *, to generate
models of the form:

plugin_model = scale_factor * (P(Q)_1 * P(Q)_2) + background
or

plugin_model = scale_factor * (P(Q) * S(Q)) + background

however, these should never be necessary. The first, multiplying two Form
Factors together, would be a highly unusual requirement, whilst the second
duplicates functionality available through the @ operator anyway. Use of the @
operator is discussed further in Example 2.

Finally, click Apply. Here is an example combining the power_law and sphere Models.

6/32

To load this Plugin Model, open a FitPage, select the category Plugin Models, and then
select the Model example1.

Notice how the parameters for the selected model_1 are prefixed by ‘A_’ and the
parameters for the selected model_2 are prefixed by ‘B_’.

Also notice that separate scale parameters are introduced for each of the constituent
Models. Thus the function that will actually be computed is:

intensity = scale * [(A_scale * model_1) + (B_scale * model_2)] + background

7/32

Finally, also note that the option to multiply the Plugin Model by a Structure Factor in the
FitPage is denied. This restriction may be lifted in a future version of SasView. In the
meantime, Example 2 below shows how to workaround this.

Example 2 – Combining More Than Two Models

A typical use case here would be for combining a Plugin Model with a Structure Factor,
but it could equally involve combining multiple Models (ie, multiple Form Factors).

Create a Plugin Model with the Easy Add/Multiply Editor (see Example 1 above).

Plugin Models reside in a plugins folder in your profile folder:

(Windows) C:\Users\<username>\.sasview\plugin_models

(Mac) ~/.sasview/plugin_models

Navigate to this folder and open the Plugin Model in a text editor. It will have a .py file
extension (signifying it is a Python file).

Here is how the contents of the Plugin Model example1.py created in Example 1 appear:

from sasmodels.core import load_model_info
from sasmodels.sasview_model import make_model_from_info

model_info = load_model_info('power_law+sphere')
model_info.name = 'example1'
model_info.description = 'power_law plus sphere'
Model = make_model_from_info(model_info)

To repurpose this Plugin Model it is only necessary to edit the three lines highlighted above
in green. For example, to add a hardsphere Structure Factor to this Plugin Model change it
to read:

from sasmodels.core import load_model_info
from sasmodels.sasview_model import make_model_from_info

model_info = load_model_info('power_law+sphere@hardsphere')
model_info.name = 'example2'
model_info.description = 'power_law plus sphere x hardsphere'
Model = make_model_from_info(model_info)

The changes are highlighted in yellow.

8/32

Tip: To be valid, the load_model_info string must only contain Model names and the
operators +, @ or * (see Example 1 above). In particular, brackets are not permitted. This
means that a plugin model of the form, for example:

'(sphere+cylinder)@hardsphere'

will not work, but this form does:

'sphere@hardsphere+cylinder@hardsphere'

However, in this latter case it will be necessary to use manual constraints to control the
behaviour of the structure factor radius_effective_mode (see below and Example 6).

Tip: When the @ operator is used, a ‘radius_effective_mode’ drop-down box is added to
the model parameter table allowing the User to select how the radius (or one of a number
of other size parameters depending on the shape of the object) in the Form Factor and
the effective interaction radius in the Structure Factor are to be related.

Selecting ‘unconstrained’ means the two parameters will be optimised independently and
it is up to the User to ensure that they remain physically realistic. Selecting any of the
other options constrains the two parameters to have the same value and only the Form
Factor parameter will optimize.

Furthermore, for some models a structure_factor_mode’ drop-down will also be added.
The default for this is ‘P*S’; ie, the normal case of P(Q) * S(Q). But selecting
‘P*(1+beta*(S-1))’ will apply the ‘beta-decoupling approximation’.

For further information, see:
https://www.sasview.org/docs/user/qtgui/Perspectives/Fitting/fitting_sq.html

Save the changed file in the plugins folder, here as example2.py.

The new Plugin Model will be available in SasView if:

• the program is restarted, or
• a new FitPage is opened, or
• you navigate Fitting > Edit Custom Model > Load Plugin… > highlight the model >

Open > Save > Cancel.

When this Plugin Model is loaded the additional Structure Factor parameters become
apparent (compare the figure below with the previous figure in Example 1).

9/32

Similarly, if you knew you had, say, a trimodal system of spherical particles you might need
a model like this:

from sasmodels.core import load_model_info
from sasmodels.sasview_model import make_model_from_info

model_info = load_model_info('sphere+sphere+sphere')
model_info.name = 'example2b'
model_info.description = 'trimodal spheres'
Model = make_model_from_info(model_info)

Aside: Modality and size polydispersity are not the same thing, although it may
sometimes be difficult to distinguish between them!

A sample is multi-modal if it contains two or more distinct sub-populations of
scattering objects. If you were to mix a dispersion of 50 Å particles with a
dispersion of 100 Å particles that would create a bimodal dispersion.

Size polydispersity is where a population of scattering objects have a
distribution of sizes about some significant value. The sub-populations in a
multi-modal sample may or may not also exhibit size polydispersity. But,
obviously, if the width of the respective size distributions are comparable to the
difference in size between the sub-populations it may be very difficult to resolve
those individual sub-populations as shown in the figures below.

10/32

Simulated size distributions for a trimodal
system of 45, 50 & 55 Å particles each
exhibiting 1% Gaussian size
polydispersity.

The same trimodal system but now with
10% Gaussian size polydispersity. Also
shown (dashed line) is a unimodal size
distribution with 20% size polydispersity.

Of course, it is always possible, even likely, that SasView will not have a Model suitable
for your needs, and that no combination of the existing models will suffice either. In this
situation you will need to create a Model from first principles. For this there are four
approaches you might take, as described in each of the next four examples.

Example 3 – Creating A Simple Model With The Model Editor

Go to the Menu Bar and select Fitting > Add Custom Model. This brings up the Model
Editor dialog.

Provide a unique name for the Plugin Model about to be created. This name must not
contain any spaces (use underscores to separate words if necessary).

If the name of the Plugin Model is not unique, for example, because it is the name of a
base Model shipped with SasView or that of an existing Plugin Model, you should be
warned when you eventually click Apply as shown below.

In this situation you either need to provide a different name or check the box to allow the
existing Model to be overwritten. It is unwise to overwrite library models or create models
with the same names as library models!

Now add a short description of the Plugin Model.

11/32

The algebraic expression for the Model to be created should be specified in the text box
labelled Function(x). For this example, let us assume you wish to create a parabola Model,
perhaps because you want to ascertain the contrast match point for some SANS data.

First, notice that the independent and dependent variables used by the Model Editor are x
and y and not Q and I. This is deliberate, to underline that the fitting functionality in
SasView is completely independent of the data it is applied to. A glance at the Model
Marketplace (http://marketplace.sasview.org/), for example, will show that there are
Models for fitting Neutron Reflectivity (NR) and Dynamic Light Scattering (DLS) data in
addition to those Models intended to fit SANS/SAXS data. If you really wish to use Q (or q)
or I (or i) in your function you can always assign them to x and y like this:

Q = x

I = your function of Q
y = I
return y

However, we recommend you avoid confusion and potential pitfalls by only using x and y.

Now enter the required expression. As the tooltip alludes to, this should be in valid Python.
The normal mathematical hierarchy of operators also applies. So, for this example:

12/32

Then click Apply.

SasView will perform some simple syntax/error checking. If it finds a problem two things
happen: the border of the Function(x) box turns red, and an error message describing the
problem is written to the Log Explorer at the bottom of the SasView GUI.

In this case the check has failed because the variable A, and by extension the variables B
and C also, have not been defined. These are the parameters that the fitting engine will
optimise when the Model is used, and so need to be declared as such. To do this, click in
the box labelled Parameters, type in the first parameter and, alongside it, enter an initial
value for the parameter. Repeat the process for the remaining two parameters.

13/32

Notice that you have a choice of declaring parameters as ‘Non-polydisperse’ (ie, a
parameter may only take one value) or ‘Polydisperse’ (ie, the parameter may take a
distribution of values).

Aside: If you declare a parameter as ‘Polydisperse’ (type ‘volume’) it will also be
necessary to provide a form_volume function (see Section 6) and to write that function
without normalizing by volume (in order for SasView to return a number-average
distribution like all other models; if you do not do this the returned distribution is a z-
average distribution).

Click Apply again.

The Model check still fails, but this time with a less helpful error message:

The reason is that the function definition contains a non-Python operator; the ^ (caret)
symbol. This operator might work in Microsoft Excel, for example, but in Python the
exponentiation operator is **. So replace the incorrect operator and click Apply.

This time SasView confirms that the Model has been successfully created:

14/32

It does also warn that there are no unit tests for the Model, but for the purposes of this
example those warnings can be ignored. However, not having unit tests is bad practice!!!
See the discussion in Section 6.

Click Cancel. Open a new FitPage, load the Plugin Model example3, and Calculate the
Model.

Notice that SasView has automatically added two additional parameters to the Model:
scale and background, with the default values 1 and 0.001, respectively. SasView does
this to all Models.

What this means in practice is that instead of computing the function you typed:

y = A * x**2 + B * x + C

SasView is actually computing the function:

y = scale * (A * x**2 + B * x + C) + background

So in order to use the Model as intended it is necessary to set background = 0 (and leave
scale = 1).

Now Compute/Plot the Model.

15/32

Notice that by default SasView labels the plot axes as Q and Intensity. These labels can
be changed by right-clicking on the plot, selecting Toggle Navigation Menu, and then the
Edit axis… icon .

The x-axis range to be computed can be changed in the Fit Options tab on the FitPage.
So, for example, by changing the minimum Q value the other side of the parabola can be
plotted:

Aside: If required, the Python language math library features a comprehensive
collection of mathematical functions; for further details see:
https://docs.python.org/3/library/math.html

Additional mathematical capability is available within the numpy (Numerical Python) and
scipy (Scientific Python) libraries; see https://numpy.org/doc/stable/index.html and
https://docs.scipy.org/doc/scipy/, respectively.

16/32

All of these libraries are included in your SasView installation and do not require separate
installation. To use any functionality from them in a Model it is only necessary to ‘import’
that functionality from the relevant library. In other words:

result = cos(0) - to return the cosine of 0 radians

is equivalent to:

import math
result = math.cos(0)

result = scipy.special.gamma(3) - to return Γ(3)

is equivalent to:

from scipy import special
result = special.gamma(3)

if np.isfinite(result):
 print(‘result is not infinity or Nan’)

is equivalent to:

import numpy as np
if np.isfinite(result):

 print(‘result is not infinity or Nan’)

Where possible, use numpy or scipy functions, rather than math functions, as the former
are more likely to be GPU-compliant.

In addition, some functions commonly used by SasView have been re-written to improve
their performance in the SasView environment; for further details see:
https://www.sasview.org/docs/user/qtgui/Perspectives/Fitting/plugin.html#special-functions

It should now be apparent that although this section was titled ‘Creating a Simple Model’,
in actuality, the Model Editor can be used to create models of some complexity!

Example 4 – Repurposing An Existing Model

By definition, an existing Model, especially from the base library, but possibly also from
the Model Marketplace, ought to contain many of the essential elements necessary in a
well-written Model. These Models can therefore be used as ‘templates’ for new Models.

Locate the base library Model file correlation_length.py and copy it to your plugins folder.
As a reminder, your plugins folder is at:

17/32

(Windows) C:\Users\<username>\.sasview\plugin_models

(Mac) ~/.sasview/plugin_models

If you are using Windows, the base library of Fitting Models reside within the subfolder
\sasmodels\models in the SasView installation folder (eg, C:\SasView-5.0.5). If you
are using a Mac, it is probably easier to just search for the Model file directly.

Important! Now rename correlation_function.py in the plugins folder, here to example4.py.

Note: the only reason for choosing correlation_function.py here is that it is quite a clear
example of the structure of a Model and also a relatively simple Model.

Open the file in a text editor of your choice. If it is a ‘language-sensitive’ editor that
recognises Python, all the better (for example, the SasView (Custom) Model Editor,
Notepad++ or PyCharm).

Tip: If you use the (Custom) Model Editor it will not be necessary to restart SasView in
order to pick up the modified Model.

Below is an annotated look at the file contents as they appear in Notepad++:

Anything in green, preceded by a # symbol, is a comment.
Anything in orange, enclosed by “““, is documentation.
Anything in grey, enclosed by “ or ‘, is a text string.
Anything in blue is a Python statement.
Numerical values are in red.
Python function names are in pink.

The file starts with a description of the Model, written in ReSTructured text and using
LaTeX to markup the equations. It is this code block that appears as the Model
documentation in SasView. The Model title and parameter table are inserted automatically
during the documentation build process, as is the plot of the function using the default
parameters.

#correlation length model
Note: model title and parameter table are inserted automatically
r"""
Definition

The scattering intensity I(q) is calculated as

.. math::
 I(Q) = \frac{A}{Q^n} + \frac{C}{1 + (Q\xi)^m} + \text{background}

The first term describes Porod scattering from clusters (exponent = n) and
the second term is a Lorentzian function describing scattering from
polymer chains (exponent = m). This second term characterizes the
polymer/solvent interactions and therefore the thermodynamics. The two
multiplicative factors A and C, and the two exponents n and m are
used as fitting parameters. (Respectively *porod_scale*, *lorentz_scale*,
porod_exp and *lorentz_exp* in the parameter list.) The remaining
parameter ξ (*cor_length* in the parameter list) is a correlation
length for the polymer chains. Note that when $m=2$ this functional form

18/32

becomes the familiar Lorentzian function. Some interpretation of the
values of A and C may be possible depending on the values of m and n.

For 2D data: The 2D scattering intensity is calculated in the same way as 1D,
where the q vector is defined as

.. math:: q = \sqrt{q_x^2 + q_y^2}

References

#. B Hammouda, D L Ho and S R Kline, Insight into Clustering in
 Poly(ethylene oxide) Solutions, Macromolecules, 37 (2004) 6932-6937

Authorship and Verification

* **Author:** NIST IGOR/DANSE **Date:** pre 2010
* **Last Modified by:** Steve King **Date:** September 24, 2019
* **Last Reviewed by:**
"""

The next line imports two functions from the numpy library (see the Aside in Example 3).

from numpy import inf, errstate

The next four statements identify the Model and the default category it should belong to.
title only appears in the help documentation, but description may appear as a
tooltip within the program.

name = "correlation_length"
title = """Calculates an empirical functional form for SAS data characterized
by a low-Q signal and a high-Q signal."""
description = """
"""
category = "shape-independent"

There then follows a declaration of all the Model parameters (ie, those variables that might
optimise during fitting) in a specific sequence: the parameter name, any units for the value
of that parameter, a default value for that parameter, any lower and upper limits on that
parameters value, the type of that parameter (see below), and a short description of that
parameter.

The parameter type can be one of: “” (undeclared), “volume”, “sld” or “orientation”.

• “volume” parameters can be polydisperse;
• “sld” parameters can have magnetic moments, and;
• “orientation” parameters are used to translate orientations.

But remember, the scale and background parameters are added automatically.

pylint: disable=bad-continuation, line-too-long
["name", "units", default, [lower, upper], "type","description"],
parameters = [
 ["lorentz_scale", "", 10.0, [0, inf], "", "Lorentzian Scaling Factor"],
 ["porod_scale", "", 1e-06, [0, inf], "", "Porod Scaling Factor"],
 ["cor_length", "Ang", 50.0, [0, inf], "", "Correlation length, xi"],
 ["porod_exp", "", 3.0, [0, inf], "", "Porod Exponent, n"],
 ["lorentz_exp", "", 2.0, [0, inf], "", "Lorentzian Exponent, m"],
]
pylint: enable=bad-continuation, line-too-long

19/32

The next code block defines the calculation of I(q), including any error-trapping (in this
case allowing execution of the Model even if a divide-by-zero error is encountered). The
function called to compute I(q) is named Iq, but the computed intensities are returned in
the variable inten.
The parameters to perform the calculation must be passed to the function in the order they
were declared above (which is also the order in which they will appear in the FitPage).
Note that the first parameter passed must be q.

def Iq(q, lorentz_scale, porod_scale, cor_length, porod_exp, lorentz_exp):
 """
 1D calculation of the Correlation length model
 """
 with errstate(divide='ignore'):
 porod = porod_scale / q**porod_exp
 lorentz = lorentz_scale / (1.0 + (q * cor_length)**lorentz_exp)
 inten = porod + lorentz
 return inten

The following line:

Iq.vectorized = True

determines if the q values are passed to the computation kernel all in one go (True) or one
at a time (False). Obviously the former is to be preferred but it does place some
requirements on how the model is written. For more information, see the Aside below.

Finally, there are some unit tests. In this case these are nothing more than evaluations of
the Model at specific q values. When a Plugin Model is compiled any unit tests are
evaluated so that SasView can check it is using the Model correctly.

tests = [[{}, 0.001, 1009.98],
 [{}, 0.150141, 0.175645],
 [{}, 0.442528, 0.0213957]]

Aside: Models can be much more sophisticated than this example, especially if computing
unusual shapes, magnetism and/or orientations. Models can also be pure Python, as in
this example, or Python calling external C subroutines, or Python with embedded C code.

For further information, see
https://www.sasview.org/docs/user/qtgui/Perspectives/Fitting/plugin.html.

Now let us repurpose this model.

SasView already has the guinier Model that computes

I (q)=scale .exp[�q
2
Rg
2

3]+background
but let us suppose we want this function expressed in terms of the spherical radius, R

I (q)=scale .exp[�q
2
R
2

5]+background

20/32

We can edit example4.py as follows:

Change the Model description, in particular the equation.

new_guinier model
Note: model title and parameter table are inserted automatically
r"""
Definition

The scattering intensity I(q) is calculated as

.. math::
 I(q) = \text{scale} \cdot exp [\frac {-q^{2} R^{2}} {5}] + \text{background}

References

#. Guinier, A.

Authorship and Verification

* **Author:** **Date:**
* **Last Modified by:**
* **Last Reviewed by:**
"""

Import the exponentiation function from numpy.

from numpy import inf, errstate, exp

Change the Model name and title.

NB: At the time of writing, the name of the Plugin Model and the name of the Plugin Model
file must match; here, example4. This restriction may be removed at a later date.

name = "example4"
title = """Calculates a Guinier function with the particle radius."""
description = """
"""
category = "shape-independent"

Define a new set of parameters.

["name", "units", default, [lower, upper], "type","description"],
parameters = [
 ["sld", "1e-6/Ang^2", 1.0, [-inf, inf], "", "SLD of particle"],
 ["sld_solvent", "1e-6/Ang^2", 6.0, [-inf, inf], "", "SLD of solvent"],
 ["radius", "Ang", 50.0, [0, inf], "", "Radius of particle"],
]

Change the Model function definition.

def Iq(q, sld, sld_solvent, radius):
 """
 1D calculation of a Guinier sphere
 """
 with errstate(divide='ignore'):
 inten = (sld - sld_solvent)**2.0 * exp(-q * q * radius * radius / 5.0)
 return inten
Iq.vectorized = True

21/32

And for expediency, comment out the unit tests for now, even if it is bad practice!!!

#Tests = [[{}, 0.001, 1009.98],
[{}, 0.150141, 0.175645],
[{}, 0.442528, 0.0213957]]

Save the plugin file example4.py. Then open a new FitPage in SasView and load the
plugin example4. The Model should display like the example below.

If example4 is not visible in the Model name dropdown box then SasView encountered a
problem compiling the Model. The most likely reason for this will be a syntax error, and the
simplest way to find out is to load the Model in the Model Editor; Fitting > Edit Custom
Model > Load Plugin...

Fix the error, click Save, and try reloading the Plugin Model.

Tip: If you copy and paste code from this document you may encounter this error when
you try and load the Plugin Model:

SyntaxError: invalid character in identifier

22/32

Sometimes, depending on your operating system and the text editor you are using, non-
text characters, like minus signs, for example, paste in a form that looks right visually but
which is not recognised by Python (the character ‘encoding’ is wrong). If this happens,
just try deleting these characters in the code and replacing them with the ‘true’ character
typed from the keyboard.

If the repurposed Model is working as expected then it should be computing a scattering
curve the same as that from the base library guinier Model if the radius-of-gyration, Rg, in
that is matched to the radius in example4 (recall that Rg

2 = (3/5) radius2). And indeed it
does if the contrast term introduced into example4 but not present in guinier evaluates to 1
(so simply make one of the sld parameters equal to 1 and the other equal to 0).

Example 5 – Reparameterising An Existing Model

A typical use case here is where there is an existing Model that could be of use, but one
or more of the parameters it is optimising are not the parameters you require. Whilst you
could use the knowledge you have already gained from this tutorial to construct a new
Model, SasView has a relatively simple method of allowing you to reparameterise an
existing Model without actually editing it.

Consider the existing sphere Model in the base library. This is currently parameterised in
terms of the spherical radius, the parameter radius.

But let us suppose we wish to do the reverse of Example 4 and reparameterise this Model
in terms of the spherical radius-of-gyration, Rg. As encountered in the previous example,
the necessary transformation is Rg

2 = (3/5) radius2 or, inverting this, radius = (5/3)1/2 Rg.

Launch a text editor of your choice. If it is a ‘language-sensitive’ editor sensitive to Python,
all the better (for example, the SasView (Custom) Model Editor, Notepad++ or PyCharm).

23/32

Create a new file and enter the following code (the example below has been generated in
Notepad++; for an explanation of the colour coding see Example 4):

Tip: If you use the (Custom) Model Editor it will not be necessary to restart SasView in
order to pick up the modified Model.

from numpy import inf

from sasmodels.core import reparameterize

parameters = [

 # name, units, default, [min, max], type, description

 ["Rg", "Ang", 50, [0, inf], "volume", "Sphere Rg"],

]

translation = """

 radius = sqrt(5.0/3.0)*Rg

 """

model_info = reparameterize('sphere', parameters, translation, __file__)

Now save the file to your plugins folder, say, as example5.py.

The existing model being reparameterised is declared in the last line: ‘sphere’.

The Rg parameter declaration replaces that of the existing radius parameter in the sphere
Model when example5 is loaded as a Plugin Model.

And the translation declaration specifies how the existing parameter is computed from the
newly-declared parameter.

Tip: The code fragment above is sufficiently generic that only the portions in yellow
highlight would need to change if reparameterising another Model.

At the time of writing there are some Models whose parameters cannot be fully
translated.

Examples include: core_multi_shell, onion, spherical_sld, rpa, and unified_power_rg.
These Models have multiple instances of some parameters, where the number of
instances are variable and determined by a control parameter, such as the number of
shells or a calculation case number. Such parameters cannot presently be translated.

Open a new FitPage in SasView and load the plugin example5. The Model should display
like the example below.

24/32

If the reparameterised Model is working as expected then it should be computing a
scattering curve the same as that from the base library sphere Model if the radius-of-
gyration, Rg, in example5 is matched to the radius in sphere. And indeed it does if the
contrast terms (ie, the sld parameters) are the same in both Models.

25/32

Aside: You might think that Models example4 and example5 would also give broadly
similar scattering curves, at low-Q values at least, if computed with the same sld values.
But they do not.

The reason is that the guinier model has no volume (V) normalisation applied to it. This
model is a limiting case and is volume independent meaning a volume normalising term is
inappropriate. See: https://www.sasview.org/docs/user/models/guinier.html

radius = 50 Å = 50x10-8 cm; (sld – sld_solvent) = 1x10-6 Å-2 = 1x1010 cm-2

So the missing prefactor is V(Δsld)2 = (4/3).π.(50x10-8)3.(1x1010)2 = 52.35 cm-1

If this is applied to example4 as scale=52.35 then the Models converge.

26/32

Example 6 – Getting Creative

The obvious use case here is where no existing Model, or combination of Models, are of
use. But another use case is where you want to allow a Model to be combined with a
Structure Factor from the dropdown on the FitPage, as opposed to creating multiple
Plugin Models as shown in Examples 1 and 2.

Whatever your intentions, a good place to start is the SasView documentation page at:
https://www.sasview.org/docs/user/qtgui/Perspectives/Fitting/plugin.html

As we have seen in Example 4 there is a defined ordered structure to a Model:

• the Model Description
◦ written in ReST/LaTeX
◦ enclosed between the lines r””” and ”””

• any Function Imports

from numpy import ...

• the Model Definition

name = "model_name"
title = """short one line explanation of the model"""
description = """
slightly longer explanation of the model; can be across
multiple lines like this
"""
category = "shape-independent or shape:catergory"

• the Model Parameters
◦ Remember scale and background are added automatically to all models
◦ Try and re-use existing parameter names where possible!
◦ Parameter names should also follow mathematical convention; so radius_core

and not core_radius, for example

parameters = [
["param1", "units", default_value, [min_value, max_value],
"parameter_type", "short description of parameter1"],
["param2", "units", default_value, [min_value, max_value],
"parameter_type", "short description of parameter2"],
]

If the scattering depends on orientation then it is also necessary to include the
angles theta, phi and psi at the end of the parameter table. See the section on
‘Oriented Shapes’ in the SasView plugin documentation at:
https://www.sasview.org/docs/user/qtgui/Perspectives/Fitting/plugin.html

• the Model Function

27/32

◦ There are various ways this might be defined.
◦ In a pure Python Model, add a code block that computes the required function;

for example, in correlation_function.py:

def Iq(q, lorentz_scale, porod_scale, cor_length,
porod_exp, lorentz_exp):
 """
 1D calculation of the Correlation length model
 """
 with errstate(divide='ignore'):
 porod = porod_scale / q**porod_exp
 lorentz = lorentz_scale / (1.0 + (q *
 cor_length)**lorentz_exp)
 inten = porod + lorentz
 return inten

◦ In a Python Model with Embedded C code, add the C code between ”””
quotes; for example, in guinier.py:

Iq = """
 double exponent = fabs(rg)*rg*q*q/3.0;
 double value = exp(-exponent);
 return value;
"""

◦ In a C Model, a calling Python model of the same name must specify the
necessary C routines; for example in capped_cylinder.py:

source = ["lib/polevl.c", "lib/sas_J1.c", "lib/gauss76.c",
"capped_cylinder.c"]

◦ In this last example computation also requires three SasView library functions,
see the plugin documentation for further details.

Tips:
• C is faster than Python!
• Only C Models can run on a GPU. But also remember not to set

opencl = False!
• Only C Models currently support the use of orientational distributions

and magnetism.
• Only C Models currently support the direct calculation of <F(Q)2> or

<F(Q)>2, for example, as is used in the beta-decoupling approximation
to the Structure Factor. Remember to set have_Fq = True!

If the scattering depends on orientation then it is also necessary to compute
Iqabc(qa, qb, qc, param1, param2,…) or, if there is rotational symmetry about
the c axis, Iqac(qab, qc, param1, param2,…), etc. See the section on ‘Oriented
Shapes’ in the SasView plugin documentation at:
https://www.sasview.org/docs/user/qtgui/Perspectives/Fitting/plugin.html

28/32

• the Model Computation
◦ There are various ways to control the behaviour of the Model, see the plugin

documentation for details.

opencl = False # optional: defaults to False
set to True if the model
should be able to use GPUs

single = True # optional: defaults to True
sets the precision to be used
on GPUs; True = single,
False = double

structure_factor = False # optional: defaults to False
set to True if the model is
an S(Q) rather than a P(Q)

have_Fq = True # set to True if the model also
has an F(Q) function defined
(which you may also need to
supply); currently only
used by the beta
approximation calculation

Iq.vectorized = True # set to True if the Iq
calculation can compute with
a vector q (ie, all values at
once)
This is being deprecated

◦ If a shape Model can be used with a Structure Factor it is possible to specify
what characteristic length(s) of the shape can be tied to the effective interaction
distance of the S(Q) function. An unconstrained option is also added
automatically. For example, in capped_cylinder.py:

radius_effective_modes = [
 "equivalent cylinder excluded volume",
 "equivalent volume sphere",
 "radius",
 "half length",
 "half total length",
]

◦ The calculations for these modes are found in capped_cylinder.c.

Note that an effective radius function needs to be defined in order for the
structure_factor_mode drop-down to be enabled in the Fit Page.

29/32

◦ (Deprecated and best not used!) An alternative way of defining the effective
radius is as follows:

def ER(radius):
 radius = …
 return radius

◦ And if two parameters are correlated but it is known that one must be larger than
the other a constraint can be added as follows:

◦ valid = "param1 >= param2"

• the Model Normalisation
◦ For the calculated intensities from a shape model to be on an absolute scale

they must be correctly normalised to the volume of the shape. This is
accomplished by defining the form_volume. The I(Q) calculation should then use
form_volume as its scale factor.

◦ Not defining form_volume is equivalent to form_volume = 1.

If form_volume is not provided then the volume normalisation must be
incorporated in the model calculation, however, z-average parameters will be
returned instead of number-average parameters.

◦ In a pure Python Model or Python Model with Embedded C:

def form_volume(param1, param2,...):
 volumeis = …
 return volumeis

◦ In a C Model:

static double
form_volume(double param1, param2,...)
{
 // the calculation
 const double volumeis = ...
 return volumeis;
}

◦ Hollow shapes, that is, shapes where the volume fraction of material resides in
the shell rather than the whole volume of the shape, should also define an
equivalent shell_volume.

◦ The I(Q) calculation should then use shell_volume as its scale factor.
◦ But if shell_volume is not defined the shape is assumed to be homogeneous.

◦ As a structure factor calculation needs the volume fraction of the filled shapes
for its calculation, the volume fraction parameter in a hollow shape model
normally needs to be scaled prior to calling the structure factor. This can be
accomplished by defining the volume ratio, VR:

30/32

def VR(param1, param2,...):
 ratiois = form_volume/shell_volume
 # or some variation of this formula
 return ratiois

• the Model Unit Tests
◦ Unit tests are a way of getting SasView to check that it is running your Model

correctly. In essence, you provide a Python dictionary of parameter input values
and the corresponding q-intensity output values.

tests = [
 [{'param1': value1, 'param2' : value2, ...},
 [q1, intensity1], [q2, intensity2]],
]

◦ The example above represents quite a simple set of tests, but much more
testing functionality is available, see the plugin documentation for details.
Alternatively have a look at the library model sphere.py !

◦ If testing a Model that also operates in 2D, simply replace 1D input q values by
their (qx, qy) tuples.

Further Information

For further information, please consult

http://www.sasview.org

https://www.sasview.org/docs/user/qtgui/Perspectives/Fitting/fitting_help.html#adding-your-own-models

https://www.sasview.org/docs/user/qtgui/Perspectives/Fitting/plugin.html

http://marketplace.sasview.org/

or email

help@sasview.org

31/32

32/32

